I'm running out of ideas with this one: I'm using a dataset that is read in using
import pandas as pd
data = pd.read_csv('data.csv', index_col=[0], names=['Date', 'GDAXI', 'GSPC'], header=0)
data
Output:
GDAXI GSPC
Date
2019-07-23 12490.740234 3005.469971
2019-07-24 12522.889648 3019.560059
2019-07-25 12362.099609 3003.669922
2019-07-26 12419.900391 3025.860107
2019-07-27 12419.900391 3025.860107
... ... ...
2020-07-17 12919.610352 3224.729980
2020-07-20 13046.919922 3251.840088
2020-07-21 13171.830078 3257.300049
2020-07-22 13104.250000 3276.020020
2020-07-23 13103.389648 3256.409912
261 rows × 2 columns
There are missing dates (weekends), that I want to fill with 0 using
data = data.reindex(dates, fill_value=0)
This gives the following output:
GDAXI GSPC
2019-07-23 0.0 0.0
2019-07-24 0.0 0.0
2019-07-25 0.0 0.0
2019-07-26 0.0 0.0
2019-07-27 0.0 0.0
... ... ...
2020-07-19 0.0 0.0
2020-07-20 0.0 0.0
2020-07-21 0.0 0.0
2020-07-22 0.0 0.0
2020-07-23 0.0 0.0
367 rows × 2 columns
So for some reason reindex()
is interpreting everything as missing data.
Has anyone got any ideas what's going on? Cheers!