3

i am using TF_IDF for for feature selection and Naive Bayes Classifier. i want to calculate the total accuracy and precision.

accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_count, train_y, xvalid_count)
  print("NB, Count Vectors: ", accuracy)

 # Naive Bayes on Word Level TF IDF Vectors
  accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf, train_y, xvalid_tfidf)
    print("NB, WordLevel TF-IDF: ", accuracy)

    # Naive Bayes on Ngram Level TF IDF Vectors
   accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram, train_y, 
   xvalid_tfidf_ngram)
  print("NB, N-Gram Vectors: ", accuracy)

 # Naive Bayes on Character Level TF IDF Vectors
  accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram_chars, train_y, 
   xvalid_tfidf_ngram_chars)
  print("NB, CharLevel Vectors: ", accuracy)
Irfan Yaqub
  • 402
  • 4
  • 14

1 Answers1

3

use this:

from sklearn.metrics import classification_report

print(classification_report(true_value,predicted_value))

this will give you all that you want

Divyessh
  • 2,540
  • 1
  • 7
  • 24