Basically, each of the clients ---that have a clientId
associated with them--- can push messages and it is important that a second message from the same client isn't processed until the first one is finished processing (Even though the client can send multiple messages in a row, and they are ordered, and multiple clients sending messages should ideally not interfere with each other). And, importantly, a job shouldn't be processed twice.
I thought that using Redis I might be able to fix this issue, I started with some quick prototyping using the bull library, but I am clearly not doing it well, I was hoping someone would know how to proceed.
This is what I tried so far:
- Create jobs and add them to the same queue name for one process, using the
clientId
as the job name. - Consume jobs while waiting large random amounts of random time on 2 separate process.
- I tried adding the default locking provided by the library that I am using (
bull
) but it locks on the jobId, which is unique for each job, not on the clientId .
What I would want to happen:
- One of the consumers can't take the job from the same
clientId
until the previous one is finished processing it. - They should be able to, however, get items from different
clientId
s in parallel without problem (asynchronously). (I haven't gotten this far, I am right now simply dealing with only oneclientId
)
What I get:
- Both consumers consume as many items as they can from the queue without waiting for the previous item for the
clientId
to be completed.
Is Redis even the right tool for this job?
Example code
// ./setup.ts
import Queue from 'bull';
import * as uuid from 'uuid';
// Check that when a message is taken from a place, no other message is taken
// TO do that test, have two processes that process messages and one that sets messages, and make the job take a long time
// queue for each room https://stackoverflow.com/questions/54178462/how-does-redis-pubsub-subscribe-mechanism-works/54243792#54243792
// https://groups.google.com/forum/#!topic/redis-db/R09u__3Jzfk
// Make a job not be called stalled, waiting enough time https://github.com/OptimalBits/bull/issues/210#issuecomment-190818353
export async function sleep(ms: number): Promise<void> {
return new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
export interface JobData {
id: string;
v: number;
}
export const queue = new Queue<JobData>('messages', 'redis://127.0.0.1:6379');
queue.on('error', (err) => {
console.error('Uncaught error on queue.', err);
process.exit(1);
});
export function clientId(): string {
return uuid.v4();
}
export function randomWait(minms: number, maxms: number): Promise<void> {
const ms = Math.random() * (maxms - minms) + minms;
return sleep(ms);
}
// Make a job not be called stalled, waiting enough time https://github.com/OptimalBits/bull/issues/210#issuecomment-190818353
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
//@ts-ignore
queue.LOCK_RENEW_TIME = 5 * 60 * 1000;
// ./create.ts
import { queue, randomWait } from './setup';
const MIN_WAIT = 300;
const MAX_WAIT = 1500;
async function createJobs(n = 10): Promise<void> {
await randomWait(MIN_WAIT, MAX_WAIT);
// always same Id
const clientId = Math.random() > 1 ? 'zero' : 'one';
for (let index = 0; index < n; index++) {
await randomWait(MIN_WAIT, MAX_WAIT);
const job = { id: clientId, v: index };
await queue.add(clientId, job).catch(console.error);
console.log('Added job', job);
}
}
export async function create(nIds = 10, nItems = 10): Promise<void> {
const jobs = [];
await randomWait(MIN_WAIT, MAX_WAIT);
for (let index = 0; index < nIds; index++) {
await randomWait(MIN_WAIT, MAX_WAIT);
jobs.push(createJobs(nItems));
await randomWait(MIN_WAIT, MAX_WAIT);
}
await randomWait(MIN_WAIT, MAX_WAIT);
await Promise.all(jobs)
process.exit();
}
(function mainCreate(): void {
create().catch((err) => {
console.error(err);
process.exit(1);
});
})();
// ./consume.ts
import { queue, randomWait, clientId } from './setup';
function startProcessor(minWait = 5000, maxWait = 10000): void {
queue
.process('*', 100, async (job) => {
console.log('LOCKING: ', job.lockKey());
await job.takeLock();
const name = job.name;
const processingId = clientId().split('-', 1)[0];
try {
console.log('START: ', processingId, '\tjobName:', name);
await randomWait(minWait, maxWait);
const data = job.data;
console.log('PROCESSING: ', processingId, '\tjobName:', name, '\tdata:', data);
await randomWait(minWait, maxWait);
console.log('PROCESSED: ', processingId, '\tjobName:', name, '\tdata:', data);
await randomWait(minWait, maxWait);
console.log('FINISHED: ', processingId, '\tjobName:', name, '\tdata:', data);
} catch (err) {
console.error(err);
} finally {
await job.releaseLock();
}
})
.catch(console.error); // Catches initialization
}
startProcessor();
This is run using 3 different processes, which you might call like this (Although I use different tabs for a clearer view of what is happening)
npx ts-node consume.ts &
npx ts-node consume.ts &
npx ts-node create.ts &