1

I'd like to create a square upper triangular matrix that is defined as follows for some float c and some dimension N:

[[1 , c , c^2, ... c^N],
 [0,  1 ,   c, ... c^{N-1}],
 [0,  0 ,   1, ... c^{N-2}],
 .
 .
 .
 [0,  0 ,   0, ....    1]]

For concreteness, if N=2, then the matrix should be

[[1, c],
 [0, 1]]

And if N=3, then the matrix should be:


[[1, c, c^2],
 [0, 1,   c],
 [0, 0,   1]]

How can I do this?

Rylan Schaeffer
  • 1,945
  • 2
  • 28
  • 50

1 Answers1

1

This is a simple way to do that:

import numpy as np

c = 2
n = 5

r = np.arange(n + 1)
p = r - r[:, np.newaxis]
res = np.triu(c ** p.clip(min=0))
print(res)
# [[ 1  2  4  8 16 32]
#  [ 0  1  2  4  8 16]
#  [ 0  0  1  2  4  8]
#  [ 0  0  0  1  2  4]
#  [ 0  0  0  0  1  2]
#  [ 0  0  0  0  0  1]]

If you want to make a very big matrix and want to save time and memory you could also do this:

import numpy as np

c = 2
n = 5

b = np.zeros(2 * n + 1, a.dtype)
b[n:] = c ** np.arange(n + 1)
s, = b.strides
res = np.lib.stride_tricks.as_strided(b[n:], shape=(n + 1, n + 1), strides=(-s, s),
                                      writeable=False)
print(res)
# [[ 1  2  4  8 16 32]
#  [ 0  1  2  4  8 16]
#  [ 0  0  1  2  4  8]
#  [ 0  0  0  1  2  4]
#  [ 0  0  0  0  1  2]
#  [ 0  0  0  0  0  1]]
jdehesa
  • 58,456
  • 7
  • 77
  • 121