I have a table rate_card
as shown below which I have inserted from data-frame using
df5.to_sql('rate_card', cnx, if_exists='replace', schema='asia', index = False,method='multi')
Current data inside table
ORG_CNTY DEST_CNTY KG Cost Version
DE FR 1 50 2019-12-02
DE FR 2 80 2019-12-02
DE IND 2 65 2018-12-01
DE US 1 70 2019-12-01
I have new set data which need to insert to table again
New data
ORG_CNTY DEST_CNTY KG Cost Version
DE FR 1 60 2020-06-02
DE FR 2 90 2020-06-02
DE IND 1 55 2020-06-02
DE US 1 80 22020-06-02
Expected Output
ORG_CNTY DEST_CNTY KG Cost Version
DE FR 1 50 2019-12-02
DE FR 2 80 2019-12-02
DE IND 2 65 2018-12-01
DE US 1 70 2019-12-01
DE FR 1 60 2020-06-02
DE FR 2 90 2020-06-02
DE IND 1 55 2020-06-02
DE US 1 80 22020-06-02
my current code is truncating and loading the table new data. I want to old data and append the new data into the table. How can this done in python?