I have multiple spark structured streaming jobs and the usual behaviour that I see is that a new batch is triggered only when there are any new offsets in Kafka which is used as source to create streaming query.
But when I run this example which demonstrates arbitrary stateful operations using mapGroupsWithState
, then I see that a new batch is triggered even if there is no new data in Streaming source. Why is it so and can it be avoided?
Update-1 I modified the above example code and remove state related operation like updating/removing it. Function simply outputs zero. But still a batch is triggered every 10 seconds without any new data on netcat server.
import java.sql.Timestamp
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming._
object Stateful {
def main(args: Array[String]): Unit = {
val host = "localhost"
val port = "9999"
val spark = SparkSession
.builder
.appName("StructuredSessionization")
.master("local[2]")
.getOrCreate()
import spark.implicits._
// Create DataFrame representing the stream of input lines from connection to host:port
val lines = spark.readStream
.format("socket")
.option("host", host)
.option("port", port)
.option("includeTimestamp", true)
.load()
// Split the lines into words, treat words as sessionId of events
val events = lines
.as[(String, Timestamp)]
.flatMap { case (line, timestamp) =>
line.split(" ").map(word => Event(sessionId = word, timestamp))
}
val sessionUpdates = events
.groupByKey(event => event.sessionId)
.mapGroupsWithState[SessionInfo, Int](GroupStateTimeout.ProcessingTimeTimeout) {
case (sessionId: String, events: Iterator[Event], state: GroupState[SessionInfo]) =>
0
}
val query = sessionUpdates
.writeStream
.outputMode("update")
.trigger(Trigger.ProcessingTime("10 seconds"))
.format("console")
.start()
query.awaitTermination()
}
}
case class Event(sessionId: String, timestamp: Timestamp)
case class SessionInfo(
numEvents: Int,
startTimestampMs: Long,
endTimestampMs: Long)