I intend to create mini-batches for my deep learning neural network program, from a training set consisting 'm' number of examples. I have tried:
# First Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))
# Partition (shuffled_X, shuffled_Y). Minus the end case where mini-batch will contain lesser number of training samples.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
### START CODE HERE ### (approx. 2 lines)
mini_batch_X = shuffled_X[mini_batch_size*k:mini_batch_size*(k+2)]
mini_batch_Y = shuffled_Y[mini_batch_size*k:mini_batch_size*(k+2)]
But this is giving me following results:
shape of the 1st mini_batch_X: (128, 148)
shape of the 2nd mini_batch_X: (128, 148)
shape of the 3rd mini_batch_X: (12288, 148)
shape of the 1st mini_batch_Y: (1, 148)
shape of the 2nd mini_batch_Y: (0, 148)
shape of the 3rd mini_batch_Y: (1, 148)
mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]
The expected output is:
shape of the 1st mini_batch_X (12288, 64)
shape of the 2nd mini_batch_X (12288, 64)
shape of the 3rd mini_batch_X (12288, 20)
shape of the 1st mini_batch_Y (1, 64)
shape of the 2nd mini_batch_Y (1, 64)
shape of the 3rd mini_batch_Y (1, 20)
mini batch sanity check [ 0.90085595 -0.7612069 0.2344157 ]
I'm sure there is something wrong with slicing that I have implemented but can't to figure it out. Any help is much appreciated. Thanks!