0

I have a dataset that has long format BUT with row separation like this example

<style type="text/css">
    table.tableizer-table {
        font-size: 12px;
        border: 1px solid #CCC; 
        font-family: Arial, Helvetica, sans-serif;
    } 
    .tableizer-table td {
        padding: 4px;
        margin: 3px;
        border: 1px solid #CCC;
    }
    .tableizer-table th {
        background-color: #104E8B; 
        color: #FFF;
        font-weight: bold;
    }
</style>
<table class="tableizer-table">
<thead><tr class="tableizer-firstrow"><th>First year</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th><th>&nbsp;</th></tr></thead><tbody>
 <tr><td>8</td><td>101</td><td>6</td><td>OBL</td><td>Hist1</td><td>9</td><td>ORD</td><td>2020</td><td>&nbsp;</td><td>2081355</td><td>106</td></tr>
 <tr><td>8</td><td>102</td><td>6</td><td>OBL</td><td>Eco1</td><td>6</td><td>ORD</td><td>2020</td><td>&nbsp;</td><td>2081395</td><td>106</td></tr>
 <tr><td>Second year</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td></tr>
 <tr><td>8</td><td>204</td><td>6</td><td>OBL</td><td>Hist2</td><td>5</td><td>ORD</td><td>2021</td><td>&nbsp;</td><td>2219787</td><td>202</td></tr>
 <tr><td>8</td><td>204</td><td>6</td><td>OBL</td><td>Eco2</td><td>NP</td><td>ORD</td><td>2022</td><td>&nbsp;</td><td>2492841</td><td>206</td></tr>
</tbody></table>

So I know how to create conditional variables with mutate, case_when and ifelse, my expected result would the elimination of the row and the adittion of the column based on the year. like this.

<style type="text/css">
    table.tableizer-table {
        font-size: 12px;
        border: 1px solid #CCC; 
        font-family: Arial, Helvetica, sans-serif;
    } 
    .tableizer-table td {
        padding: 4px;
        margin: 3px;
        border: 1px solid #CCC;
    }
    .tableizer-table th {
        background-color: #104E8B; 
        color: #FFF;
        font-weight: bold;
    }
</style>
<table class="tableizer-table">
<thead><tr class="tableizer-firstrow"><th>name1</th><th>name2</th><th>name3</th><th>name4</th><th>name5</th><th>name6</th><th>name7</th><th>name8</th><th>name9</th><th>name10</th><th>name11</th><th>year</th></tr></thead><tbody>
 <tr><td>8</td><td>101</td><td>6</td><td>OBL</td><td>Hist1</td><td>9</td><td>ORD</td><td>2020</td><td>&nbsp;</td><td>2081355</td><td>106</td><td>1</td></tr>
 <tr><td>8</td><td>102</td><td>6</td><td>OBL</td><td>Eco1</td><td>6</td><td>ORD</td><td>2020</td><td>&nbsp;</td><td>2081395</td><td>106</td><td>1</td></tr>
 <tr><td>8</td><td>204</td><td>6</td><td>OBL</td><td>Hist2</td><td>5</td><td>ORD</td><td>2021</td><td>&nbsp;</td><td>2219787</td><td>202</td><td>2</td></tr>
 <tr><td>8</td><td>204</td><td>6</td><td>OBL</td><td>Eco2</td><td>NP</td><td>ORD</td><td>2022</td><td>&nbsp;</td><td>2492841</td><td>206</td><td>2</td></tr>
</tbody></table>

I little code so you don´t have to write.

library(tible)
df <- tribble(
  ~name1, ~name2,
  "first year", NA,
  "eco1",   'NP',
  "hist1",   '5',
  "second year", NA,
  "eco2",   'NP',
  "hist2",   '5'
)
EvilEmi
  • 49
  • 3

1 Answers1

0

You can do this based on the presence of text "year" in name1 or NA value in name2. Chose whichever is appropriate for your case.

Based on "year"

library(dplyr)
df %>%
   mutate(year = cumsum(grepl('year', name1))) %>%
   filter(!grepl('year', name1))

OR based on NA value in name2

df %>%
  mutate(year = cumsum(is.na(name2))) %>%
  filter(!is.na(name2))

Both of which return :

#  name1 name2  year
#  <chr> <chr> <int>
#1 eco1  NP        1
#2 hist1 5         1
#3 eco2  NP        2
#4 hist2 5         2
Ronak Shah
  • 377,200
  • 20
  • 156
  • 213