I have 2 dataframes with index type: Datatimeindex and I would like to copy one row to another. The dataframes are:
variable: df
DateTime
2013-01-01 01:00:00 0.0
2013-01-01 02:00:00 0.0
2013-01-01 03:00:00 0.0
....
Freq: H, Length: 8759, dtype: float64
variable: consumption_year
Potência Ativa ... Costs
Datetime ...
2019-01-01 00:00:00 11.500000 ... 1.08874
2019-01-01 01:00:00 6.500000 ... 0.52016
2019-01-01 02:00:00 5.250000 ... 0.38183
2019-01-01 03:00:00 5.250000 ... 0.38183
[8760 rows x 5 columns]
here is my code:
mc.run_model(tmy_data)
df=round(mc.ac.fillna(0)/1000,3)
consumption_year['PVProduction'] = df.iloc[:,[1]] #1
consumption_year['PVProduction'] = df[:,1] #2
I am trying to copy the second column of df, to a new column in consumption_year dataframe but none of those previous experiences worked. Looking to the index, I see 3 major differences:
- year (2013 and 2019)
- starting hour: 01:00 and 00:00
- length: 8760 and 8759
Do I need to solve those 3 differences first (making an datetime from df equal to consumption_year), before I can copy one row to another? If so, could you provide me a solution to fix those differences.
Those are the errors:
1: consumption_year['PVProduction'] = df.iloc[:,[1]]
raise IndexingError("Too many indexers")
pandas.core.indexing.IndexingError: Too many indexers
2: consumption_year['PVProduction'] = df[:,1]
raise ValueError("Can only tuple-index with a MultiIndex")
ValueError: Can only tuple-index with a MultiIndex