So I have to classes Swarm and Particles, and a class for Sphere function. But when I'm trying to run the optimization, I get error on iteretation and I don't understand why:
TypeError: '<' not supported between instances of 'NoneType' and 'NoneType'
Eventually, if you can give me some tipf for shifted sphere function.
from abc import ABCMeta, abstractmethod
import numpy import numpy.random
from particle import Particle
class Swarm (object):
__metaclass__ = ABCMeta
def __init__ (self,
swarmsize,
minvalues,
maxvalues,
currentVelocityRatio,
localVelocityRatio,
globalVelocityRatio):
self.__swarmsize = swarmsize
assert len (minvalues) == len (maxvalues)
assert (localVelocityRatio + globalVelocityRatio) > 4
self.__minvalues = numpy.array (minvalues[:])
self.__maxvalues = numpy.array (maxvalues[:])
self.__currentVelocityRatio = currentVelocityRatio
self.__localVelocityRatio = localVelocityRatio
self.__globalVelocityRatio = globalVelocityRatio
self.__globalBestFinalFunc = None
self.__globalBestPosition = None
self.__swarm = self.__createSwarm ()
def __getitem__ (self, index):
"""
Возвращает частицу с заданным номером
"""
return self.__swarm[index]
def __createSwarm (self):
return [Particle (self) for _ in range (self.__swarmsize) ]
def nextIteration (self):
for particle in self.__swarm:
return particle.nextIteration (self)
@property
def minvalues (self):
return self.__minvalues
@property
def maxvalues (self):
return self.__maxvalues
@property
def currentVelocityRatio (self):
return self.__currentVelocityRatio
@property
def localVelocityRatio (self):
return self.__localVelocityRatio
@property
def globalVelocityRatio (self):
return self.__globalVelocityRatio
@property
def globalBestPosition (self):
return self.__globalBestPosition
@property
def globalBestFinalFunc (self):
return self.__globalBestFinalFunc
def getFinalFunc (self, position):
assert len (position) == len (self.minvalues)
finalFunc = self._finalFunc (position)
if (self.__globalBestFinalFunc == None or
finalFunc < self.__globalBestFinalFunc):
self.__globalBestFinalFunc = finalFunc
self.__globalBestPosition = position[:]
@abstractmethod
def _finalFunc (self, position):
pass
@property
def dimension (self):
return len (self.minvalues)
def _getPenalty (self, position, ratio):
penalty1 = sum ([ratio * abs (coord - minval)
for coord, minval in zip (position, self.minvalues)
if coord < minval ] )
penalty2 = sum ([ratio * abs (coord - maxval)
for coord, maxval in zip (position, self.maxvalues)
if coord > maxval ] )
return penalty1 + penalty2
class Particle (object):
def __init__ (self, swarm):
self.__currentPosition = self.__getInitPosition (swarm)
self.__localBestPosition = self.__currentPosition[:]
self.__localBestFinalFunc = swarm.getFinalFunc (self.__currentPosition)
self.__velocity = self.__getInitVelocity (swarm)
@property
def position (self):
return self.__currentPosition
@property
def velocity (self):
return self.__velocity
def __getInitPosition (self, swarm):
return numpy.random.rand (swarm.dimension) * (swarm.maxvalues - swarm.minvalues) + swarm.minvalues
def __getInitVelocity (self, swarm):
assert len (swarm.minvalues) == len (self.__currentPosition)
assert len (swarm.maxvalues) == len (self.__currentPosition)
minval = -(swarm.maxvalues - swarm.minvalues)
maxval = (swarm.maxvalues - swarm.minvalues)
return numpy.random.rand (swarm.dimension) * (maxval - minval) + minval
def nextIteration (self, swarm):
rnd_currentBestPosition = numpy.random.rand (swarm.dimension)
rnd_globalBestPosition = numpy.random.rand (swarm.dimension)
veloRatio = swarm.localVelocityRatio + swarm.globalVelocityRatio
commonRatio = (2.0 * swarm.currentVelocityRatio /
(numpy.abs (2.0 - veloRatio - numpy.sqrt (veloRatio ** 2 - 4.0 * veloRatio) ) ) )
newVelocity_part1 = commonRatio * self.__velocity
newVelocity_part2 = (commonRatio *
swarm.localVelocityRatio *
rnd_currentBestPosition *
(self.__localBestPosition - self.__currentPosition) )
newVelocity_part3 = (commonRatio *
swarm.globalVelocityRatio *
rnd_globalBestPosition *
(swarm.globalBestPosition - self.__currentPosition) )
self.__velocity = newVelocity_part1 + newVelocity_part2 + newVelocity_part3
self.__currentPosition += self.__velocity
finalFunc = swarm.getFinalFunc (self.__currentPosition)
if finalFunc < self.__localBestFinalFunc:
self.__localBestPosition = self.__currentPosition[:]
self.__localBestFinalFunc = finalFunc
class Swarm_X2 (Swarm): def init (self, swarmsize, minvalues, maxvalues, currentVelocityRatio, localVelocityRatio, globalVelocityRatio): Swarm.init (self, swarmsize, minvalues, maxvalues, currentVelocityRatio, localVelocityRatio, globalVelocityRatio)
def _finalFunc (self, position):
penalty = self._getPenalty (position, 10000.0)
finalfunc = sum (position * position)
return finalfunc + penalty
from swarm_x2 import Swarm_X2 from utils import printResult
if name == "main": iterCount = 300
dimension = 5
swarmsize = 200
minvalues = numpy.array ([-100] * dimension)
maxvalues = numpy.array ([100] * dimension)
currentVelocityRatio = 0.1
localVelocityRatio = 1.0
globalVelocityRatio = 5.0
swarm = Swarm_X2 (swarmsize,
minvalues,
maxvalues,
currentVelocityRatio,
localVelocityRatio,
globalVelocityRatio
)
for n in range (iterCount):
print "Position", swarm[0].position
print "Velocity", swarm[0].velocity
print printResult (swarm, n)
swarm.nextIteration()