0

I've tried to run this code on Carla's command prompt window but it generates the error NameError: name self is not defined here:

self.model.compile(optimizer='adam', loss=self.conditional_loss,
                  metrics=[self.conditional_loss, 
                  keras.metrics.sparse_categorical_accuracy],
                  run_eagerly=True)

But if i remove this then it would generate a warning saying that i should either run this in eagerly mode or graph mode with Keras's model.fit embedded into the code to continue to train the model. Any help would be fine, thanks!

Full Code for reference:

import glob
import os
import sys
import random
import time
import numpy as np
import cv2
import math
from collections import deque
from keras.applications.xception import Xception
from keras.layers import Dense, GlobalAveragePooling2D
from keras.optimizers import Adam
from keras.models import Model
from keras.callbacks import TensorBoard

import tensorflow as tf
import keras.backend.tensorflow_backend as backend
import tensorflow.compat.v1 as tf
from threading import Thread

from tqdm import tqdm

try:
    sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
        sys.version_info.major,
        sys.version_info.minor,
        'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
    pass
import carla




SHOW_PREVIEW = False
IM_WIDTH = 640
IM_HEIGHT = 480
SECONDS_PER_EPISODE = 10
REPLAY_MEMORY_SIZE = 5_000
MIN_REPLAY_MEMORY_SIZE = 1_000
MINIBATCH_SIZE = 16
PREDICTION_BATCH_SIZE = 1
TRAINING_BATCH_SIZE = MINIBATCH_SIZE // 4
UPDATE_TARGET_EVERY = 5
MODEL_NAME = "Xception"

MEMORY_FRACTION = 0.4
MIN_REWARD = -200

EPISODES = 100

DISCOUNT = 0.99
epsilon = 1
EPSILON_DECAY = 0.95 ## 0.9975 99975
MIN_EPSILON = 0.001

AGGREGATE_STATS_EVERY = 10


# Own Tensorboard class
class ModifiedTensorBoard(TensorBoard):

    # Overriding init to set initial step and writer (we want one log file for all .fit() calls)
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.step = 1

    # Overriding this method to stop creating default log writer
    def set_model(self, model):
        pass

    # Overrided, saves logs with our step number
    # (otherwise every .fit() will start writing from 0th step)
    def on_epoch_end(self, epoch, logs=None):
        self.update_stats(**logs)

    # Overrided
    # We train for one batch only, no need to save anything at epoch end
    def on_batch_end(self, batch, logs=None):
        pass

    # Overrided, so won't close writer
    def on_train_end(self, _):
        pass

    # Custom method for saving own metrics
    # Creates writer, writes custom metrics and closes writer
    def update_stats(self, **stats):
        self._write_logs(stats, self.step)

    def _write_logs(self, logs, index):
      with self.writer.as_default():
        for name, value in logs.items():
          tf.summary.scalar(name, value, step=index)
          self.step += 1
          self.writer.flush()

    mnist = tf.keras.datasets.mnist

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0

    model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10)
])

    predictions = model(x_train[:1]).numpy()
    predictions

    tf.nn.softmax(predictions).numpy()
    loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    loss_fn(y_train[:1], predictions).numpy()

    model.compile(optimizer='adam',
              loss=loss_fn,
              metrics=['accuracy'])

    model.fit(x_train, y_train, epochs=5)
    self.model.compile(optimizer='adam', loss=self.conditional_loss,
                       metrics=[self.conditional_loss, 
                       keras.metrics.sparse_categorical_accuracy],
                                    run_eagerly=True
                                     )

class CarEnv:
    SHOW_CAM = SHOW_PREVIEW
    STEER_AMT = 1.0
    im_width = IM_WIDTH
    im_height = IM_HEIGHT
    front_camera = None

    def __init__(self):
        self.client = carla.Client("localhost", 2000)
        self.client.set_timeout(2.0)
        self.world = self.client.get_world()
        self.blueprint_library = self.world.get_blueprint_library()
        self.model_3 = self.blueprint_library.filter("model3")[0]

    def reset(self):
        self.collision_hist = []
        self.actor_list = []

        self.transform = random.choice(self.world.get_map().get_spawn_points())
        self.vehicle = self.world.spawn_actor(self.model_3, self.transform)
        self.actor_list.append(self.vehicle)

        self.rgb_cam = self.blueprint_library.find('sensor.camera.rgb')
        self.rgb_cam.set_attribute("image_size_x", f"{self.im_width}")
        self.rgb_cam.set_attribute("image_size_y", f"{self.im_height}")
        self.rgb_cam.set_attribute("fov", f"110")

        transform = carla.Transform(carla.Location(x=2.5, z=0.7))
        self.sensor = self.world.spawn_actor(self.rgb_cam, transform, attach_to=self.vehicle)
        self.actor_list.append(self.sensor)
        self.sensor.listen(lambda data: self.process_img(data))

        self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0))
        time.sleep(4)

        colsensor = self.blueprint_library.find("sensor.other.collision")
        self.colsensor = self.world.spawn_actor(colsensor, transform, attach_to=self.vehicle)
        self.actor_list.append(self.colsensor)
        self.colsensor.listen(lambda event: self.collision_data(event))

        while self.front_camera is None:
            time.sleep(0.01)

        self.episode_start = time.time()
        self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0))

        return self.front_camera

    def collision_data(self, event):
        self.collision_hist.append(event)

    def process_img(self, image):
        i = np.array(image.raw_data)
        #print(i.shape)
        i2 = i.reshape((self.im_height, self.im_width, 4))
        i3 = i2[:, :, :3]
        if self.SHOW_CAM:
            cv2.imshow("", i3)
            cv2.waitKey(1)
        self.front_camera = i3

    def step(self, action):
        if action == 0:
            self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=-1*self.STEER_AMT))
        elif action == 1:
            self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer= 0))
        elif action == 2:
            self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=1*self.STEER_AMT))

        v = self.vehicle.get_velocity()
        kmh = int(3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2))

        if len(self.collision_hist) != 0:
            done = True
            reward = -200
        elif kmh < 50:
            done = False
            reward = -1
        else:
            done = False
            reward = 1

        if self.episode_start + SECONDS_PER_EPISODE < time.time():
            done = True

        return self.front_camera, reward, done, None


class DQNAgent:
    def __init__(self):
        self.model = self.create_model()
        self.target_model = self.create_model()
        self.target_model.set_weights(self.model.get_weights())

        self.replay_memory = deque(maxlen=REPLAY_MEMORY_SIZE)

        self.tensorboard = ModifiedTensorBoard(log_dir=f"logs/{MODEL_NAME}-{int(time.time())}")
        self.target_update_counter = 0
        self.graph = tf.get_default_graph()

        self.terminate = False
        self.last_logged_episode = 0
        self.training_initialized = False


    def create_model(self):
        base_model = Xception(weights=None, include_top=False, input_shape=(IM_HEIGHT, IM_WIDTH,3))

        x = base_model.output
        x = GlobalAveragePooling2D()(x)

        predictions = Dense(3, activation="linear")(x)
        model = Model(inputs=base_model.input, outputs=predictions)
        model.compile(loss="mse", optimizer=Adam(lr=0.001), metrics=["accuracy"])
        return model

    def update_replay_memory(self, transition):
        # transition = (current_state, action, reward, new_state, done)
        self.replay_memory.append(transition)

    def train(self):
        if len(self.replay_memory) < MIN_REPLAY_MEMORY_SIZE:
            return

        minibatch = random.sample(self.replay_memory, MINIBATCH_SIZE)

        current_states = np.array([transition[0] for transition in minibatch])/255
        with self.graph.as_default():
            current_qs_list = self.model.predict(current_states, PREDICTION_BATCH_SIZE)

        new_current_states = np.array([transition[3] for transition in minibatch])/255
        with self.graph.as_default():
            future_qs_list = self.target_model.predict(new_current_states, PREDICTION_BATCH_SIZE)

        X = []
        y = []

        for index, (current_state, action, reward, new_state, done) in enumerate(minibatch):
            if not done:
                max_future_q = np.max(future_qs_list[index])
                new_q = reward + DISCOUNT * max_future_q
            else:
                new_q = reward

            current_qs = current_qs_list[index]
            current_qs[action] = new_q

            X.append(current_state)
            y.append(current_qs)

        log_this_step = False
        if self.tensorboard.step > self.last_logged_episode:
            log_this_step = True
            self.last_log_episode = self.tensorboard.step

        with self.graph.as_default():
            self.model.fit(np.array(X)/255, np.array(y), batch_size=TRAINING_BATCH_SIZE, verbose=0, shuffle=False, callbacks=[self.tensorboard] if log_this_step else None)


        if log_this_step:
            self.target_update_counter += 1

        if self.target_update_counter > UPDATE_TARGET_EVERY:
            self.target_model.set_weights(self.model.get_weights())
            self.target_update_counter = 0

    def get_qs(self, state):
        return self.model.predict(np.array(state).reshape(-1, *state.shape)/255)[0]

    def train_in_loop(self):
        X = np.random.uniform(size=(1, IM_HEIGHT, IM_WIDTH, 3)).astype(np.float32)
        y = np.random.uniform(size=(1, 3)).astype(np.float32)
        with self.graph.as_default():
            self.model.fit(X,y, verbose=False, batch_size=1)

        self.training_initialized = True

        while True:
            if self.terminate:
                return
            self.train()
            time.sleep(0.01)



if __name__ == '__main__':
    FPS = 60
    # For stats
    ep_rewards = [-200]

    # For more repetitive results
    random.seed(1)
    np.random.seed(1)
    tf.set_random_seed(1)

    # Memory fraction, used mostly when training multiple agents
    #backend.set_session(tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)))
    #tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction)

    # Create models folder
    if not os.path.isdir('models'):
        os.makedirs('models')

    # Create agent and environment
    agent = DQNAgent()
    env = CarEnv()


    # Start training thread and wait for training to be initialized
    trainer_thread = Thread(target=agent.train_in_loop, daemon=True)
    trainer_thread.start()
    while not agent.training_initialized:
        time.sleep(0.01)

    # Initialize predictions - forst prediction takes longer as of initialization that has to be done
    # It's better to do a first prediction then before we start iterating over episode steps
    agent.get_qs(np.ones((env.im_height, env.im_width, 3)))

    # Iterate over episodes
    for episode in tqdm(range(1, EPISODES + 1), ascii=True, unit='episodes'):
        #try:

            env.collision_hist = []

            # Update tensorboard step every episode
            agent.tensorboard.step = episode

            # Restarting episode - reset episode reward and step number
            episode_reward = 0
            step = 1

            # Reset environment and get initial state
            current_state = env.reset()

            # Reset flag and start iterating until episode ends
            done = False
            episode_start = time.time()

            # Play for given number of seconds only
            while True:

                # This part stays mostly the same, the change is to query a model for Q values
                if np.random.random() > epsilon:
                    # Get action from Q table
                    action = np.argmax(agent.get_qs(current_state))
                else:
                    # Get random action
                    action = np.random.randint(0, 3)
                    # This takes no time, so we add a delay matching 60 FPS (prediction above takes longer)
                    time.sleep(1/FPS)

                new_state, reward, done, _ = env.step(action)

                # Transform new continous state to new discrete state and count reward
                episode_reward += reward

                # Every step we update replay memory
                agent.update_replay_memory((current_state, action, reward, new_state, done))

                current_state = new_state
                step += 1

                if done:
                    break

            # End of episode - destroy agents
            for actor in env.actor_list:
                actor.destroy()

            # Append episode reward to a list and log stats (every given number of episodes)
            ep_rewards.append(episode_reward)
            if not episode % AGGREGATE_STATS_EVERY or episode == 1:
                average_reward = sum(ep_rewards[-AGGREGATE_STATS_EVERY:])/len(ep_rewards[-AGGREGATE_STATS_EVERY:])
                min_reward = min(ep_rewards[-AGGREGATE_STATS_EVERY:])
                max_reward = max(ep_rewards[-AGGREGATE_STATS_EVERY:])
                agent.tensorboard.update_stats(reward_avg=average_reward, reward_min=min_reward, reward_max=max_reward, epsilon=epsilon)

                # Save model, but only when min reward is greater or equal a set value
                if min_reward >= MIN_REWARD:
                    agent.model.save(f'models/{MODEL_NAME}__{max_reward:_>7.2f}max_{average_reward:_>7.2f}avg_{min_reward:_>7.2f}min__{int(time.time())}.model')

            # Decay epsilon
            if epsilon > MIN_EPSILON:
                epsilon *= EPSILON_DECAY
                epsilon = max(MIN_EPSILON, epsilon)


    # Set termination flag for training thread and wait for it to finish
    agent.terminate = True
    trainer_thread.join()
    agent.model.save(f'models/{MODEL_NAME}__{max_reward:_>7.2f}max_{average_reward:_>7.2f}avg_{min_reward:_>7.2f}min__{int(time.time())}.model')

Anime
  • 11
  • 2
    All that code at the bottom of the class where the error is happening is outside of methods. Are you intending for that code to be inside of a method? `self` won't exist except as a parameter to a class method (or, if you create another carriable with that name). It doesn't just exist like `this` in other languages. – Carcigenicate Jun 23 '20 at 14:19
  • When i placed the ```self.model.compile``` code outside of the class function, it generates the same error. How can i change the section of code from inside the class? – Anime Jun 23 '20 at 14:23
  • The code needs to be *inside* of a method. – Carcigenicate Jun 23 '20 at 14:24
  • Ok, can you explain what do you mean by a method? Do you mean like an executable statement telling the code what to do? – Anime Jun 23 '20 at 14:29
  • A method is a "class function" (as last as you're using that term). `set_model` and `on_epoch_end` are methods. – Carcigenicate Jun 23 '20 at 14:32
  • Thank you, using this method ```def compile(self)``` fixed the error but it's still generating the warning. ```ValueError: Calling `Model.fit` in graph mode is not supported when the `Model` instance was constructed with eager mode enabled. Please construct your `Model` instance in graph mode or call `Model.fit` with eager mode enabled.``` – Anime Jun 23 '20 at 14:51
  • That's an entirely separate issue related to the library you're using. I've never used Keras or tensor flow, so I don't know. – Carcigenicate Jun 23 '20 at 14:56
  • @Anime ,Inline with your last ValueError. Please refer answer of this issue https://stackoverflow.com/questions/68396843/valueerror-calling-model-fit-in-graph-mode-is-not-supported-when-the-model –  Aug 31 '21 at 17:16

0 Answers0