while selecting features in machine learning, one can use Lasso regression to figure out the least required feature by selecting the least coefficient but we can do the same using Linear Regression
linear regression
Y=x0+x1b1+x2b2.......xnbn
here x1,x2,x3...xn are coefficient, using gradient descent we get the best coefficient, we can remove the features who has the least coefficient. now when it is possible using Linear Regression then why should one use Lasso Regression? am i missing something, please help