Very new to C#, so this could be a silly question.
I am working with alot of UInt64's. These are expressed as hex right? If we look at its binary representation, can we return such an array that if we apply the 'or' operation to, we will arrive back at the original UInt64?
For example, let's say
x = 1011
Then, I am looking for an efficient way to arrive at,
f(x) = {1000, 0010, 0001}
Where these numbers are in hex, rather than binary. Sorry, I am new to hex too.
I have a method already, but it feels inefficient. I first convert to a binary string, and loop over that string to find each '1'. I then add the corresponding binary number to an array.
Any thoughts?
Here is a better example. I have a hexadecimal number x, in the form of,
UInt64 x = 0x00000000000000FF
Where the binary representation of x is
0000000000000000000000000000000000000000000000000000000011111111
I wish to find an array consisting of hexadecimal numbers (UInt64??) such that the or operation applied to all members of that array would result in x again. For example,
f(x) = {0x0000000000000080, // 00000....10000000
0x0000000000000040, // 00000....01000000
0x0000000000000020, // 00000....00100000
0x0000000000000010, // 00000....00010000
0x0000000000000008, // 00000....00001000
0x0000000000000004, // 00000....00000100
0x0000000000000002, // 00000....00000010
0x0000000000000001 // 00000....00000001
}
I think the question comes down to finding an efficient way to find the index of the '1's in the binary expansion...
public static UInt64[] findOccupiedSquares(UInt64 pieces){
UInt64[] toReturn = new UInt64[BitOperations.PopCount(pieces)];
if (BitOperations.PopCount(pieces) == 1){
toReturn[0] = pieces;
}
else{
int i = 0;
int index = 0;
while (pieces != 0){
i += 1;
pieces = pieces >> 1;
if (BitOperations.TrailingZeroCount(pieces) == 0){ // One
int rank = (int)(i / 8);
int file = i - (rank * 8);
toReturn[index] = LUTable.MaskRank[rank] & LUTable.MaskFile[file];
index += 1;
}
}
}
return toReturn;
}