I'm using Tensorflow 2.1 and Python 3, creating my custom training model following the tutorial "Tensorflow - Custom training: walkthrough".
I'm trying to use Hamming Distance on my loss function:
import tensorflow as tf
import tensorflow_addons as tfa
def my_loss_hamming(model, x, y):
global output
output = model(x)
return tfa.metrics.hamming.hamming_loss_fn(y, output, threshold=0.5, mode='multilabel')
def grad(model, inputs, targets):
with tf.GradientTape() as tape:
tape.watch(model.trainable_variables)
loss_value = my_loss_hamming(model, inputs, targets)
return loss_value, tape.gradient(loss_value, model.trainable_variables)
When I call it:
loss_value, grads = grad(model, feature, label)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
grads
variable is a list with 38 None.
And I get the error:
No gradients provided for any variable: ['conv1_1/kernel:0', ...]
Is there any way to use Hamming Distance without "interrupts the gradient chain registered by the gradient tape"?