suppose i want to find any value of x and y such that they satisfy x . W + y . D = P
this can be done by the following using extended euclidean algorithm
int exgcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int g, xi, yi;
g = exgcd(b, a % b, xi, yi);
x = yi;
y = xi - (a / b * yi);
return g;
}
but this will be just some random x and y satisfying the equation
suppose i add an additional constraint that i want any x y z such that
x>=0 y>=0 z>=0 and x + y + z = n
how can i effectively (please share code/pseudocode if possible) find all such x y and z??
my question boils down to find any x and y (using extended euclidean algorithm) which
1) satisfy a linear equation
2) fall in a given range