An option using pandas
: create a date_range from start to end date, extract the month numbers from that as a pandas.Series, shift it 1 element forward and 1 element backward to retrieve a boolean mask where the months change (!=). Now you can create a DataFrame to work with or create a list of lists if you like.
Ex:
import pandas as pd
start_date, end_date = '2018-6-15', '2019-3-20'
dtrange = pd.date_range(start=start_date, end=end_date, freq='d')
months = pd.Series(dtrange .month)
starts, ends = months.ne(months.shift(1)), months.ne(months.shift(-1))
df = pd.DataFrame({'month_starting_date': dtrange[starts].strftime('%Y-%m-%d'),
'month_ending_date': dtrange[ends].strftime('%Y-%m-%d')})
# df
# month_starting_date month_ending_date
# 0 2018-06-15 2018-06-30
# 1 2018-07-01 2018-07-31
# 2 2018-08-01 2018-08-31
# 3 2018-09-01 2018-09-30
# 4 2018-10-01 2018-10-31
# 5 2018-11-01 2018-11-30
# 6 2018-12-01 2018-12-31
# 7 2019-01-01 2019-01-31
# 8 2019-02-01 2019-02-28
# 9 2019-03-01 2019-03-20
# as a list of lists:
l = [df.columns.values.tolist()] + df.values.tolist()
# l
# [['month_starting_date', 'month_ending_date'],
# ['2018-06-15', '2018-06-30'],
# ['2018-07-01', '2018-07-31'],
# ['2018-08-01', '2018-08-31'],
# ['2018-09-01', '2018-09-30'],
# ['2018-10-01', '2018-10-31'],
# ['2018-11-01', '2018-11-30'],
# ['2018-12-01', '2018-12-31'],
# ['2019-01-01', '2019-01-31'],
# ['2019-02-01', '2019-02-28'],
# ['2019-03-01', '2019-03-20']]
Note that I use strftime
when I create the DataFrame. Do this if you want the output to be of dtype string. If you want to continue to work with datetime objects (timestamps), don't apply strftime
.