I'm having a great difficulty trying to prove even very simple lemmas about a function I defined. This is my definition:
Require Import List.
Require Export Omega.
Require Export FunInd.
Require Export Recdef.
Notation "A :: B" := (cons A B).
Notation "[]" := nil.
Notation "[[ A ]]" := (A :: nil).
Inductive tm :=
| E: nat -> tm
| L: list tm -> tm.
Definition T := list tm.
Fixpoint add_list (l: list nat) : nat :=
match l with
| [] => 0
| n :: l' => n + (add_list l')
end.
Fixpoint depth (t: tm) : nat :=
match t with
| E _ => 1
| L l => 1 + (add_list (map depth l))
end.
Definition sum_depth (l: T) := add_list (map depth l).
Function sum_total (l: T) {measure sum_depth l} : nat :=
match l with
| [] => 0
| [[E n]] => n
| [[L li]] => sum_total li
| E n :: l' => n + (sum_total l')
| L li :: l' => (sum_total li) + (sum_total l')
end.
Proof.
- auto.
- intros; unfold sum_depth; subst. simpl; omega.
- intros; subst; unfold sum_depth; simpl; omega.
- intros; subst; unfold sum_depth; simpl; omega.
Defined.
The inductive type can't be changed.
I can prove simple propositions like Lemma test : forall n, sum_total [[E n]] = n.
using the compute tactic, but another trivial lemma like Lemma test2 : forall l, sum_total [[L l]] = sum_total l.
hangs.