Can anybody explain me, how to do Breadth first search in the graph that uses vector of linked lists ?
My Graph header file:
#include <string>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
struct vertex {
string code;
vertex* next;
};
struct AdjList {
vertex *head;
AdjList(vertex* Given) {
head = Given;
}
};
class Graph {
map<string, string> associations;
int nodeNum; //amount of nodes or size of the graph;
vector<AdjList> adjList;
public:
Graph(int NodeNum);
~Graph();
int singleSize(string codeName);
int getSize();// must destroy every prerequisite list connected to the node
vertex* generateVertex(string codeName);
int getIndexOfVertex(vertex* givenVertex); // will find the location of the vertex in the array
void addVertex(vertex* newVertex);
void addEdge(string codeName, string linkCodeName);
void printPrerequisites(vertex* ptr, int i);
bool deleteVertex(string codeName);
bool deleteEdge(string codeName, string linkCodeName);
bool elemExistsInGraph(string codeName);
void printPrereq(string codeName);
void printCourseTitle(string codeName);
void printGraph();
};
I am trying to print all connected nodes within the graph using the breadth first search. Here is my code for the breadth first search algorithm that does not work.
void Graph::printPrereq(string codeName) {
int adjListSize = this->adjList.size();
int index = getIndexOfVertex(generateVertex(codeName));
bool visited[this->adjList.size()];
for(int i = 0; i < adjListSize; i++) {
visited[i] = false;
}
list<int> queue;
visited[index] = true;
queue.push_back(index);
while(!queue.empty()) {
index = queue.front();
vertex* pointer = this->adjList[index].head;
cout << pointer->code;
queue.pop_front();
while(pointer != nullptr){
if(!visited[getIndexOfVertex(pointer)]) {
queue.push_back(getIndexOfVertex(pointer));
visited[getIndexOfVertex(pointer)] = true;
}
cout << pointer->code <<"->";
pointer = pointer->next;
}
cout << "Null" << endl;
}
}
This algorithm outputs nodes that are only within the linked list, but not the ones that are connected through the graph.
Can anybody help and solve this problem?