I have some older model of the source when I could get it to work.
…
I have some WiFi Xbee modules that I used w/ some converter boards (base boards). I used it to attach the communication of the Xbee from one computer to another, e.g. random desktop to BeagleBone Black via USB instead of UART. So, I would use the source, listed below, to attach my USB dongle for the Xbee communication from the BBB to the other field module.
Their I/O stuff can be found here: https://github.com/digidotcom/xbee-python/tree/master/examples/io.
Also...changing just some of their lines in their source w/ the USB dongle WiFi adapter boards proved valuable in signaling LEDs and other sensors.
Oh and you will need what they are now calling Carrier Boards. It is the adapter board I just typed out. So, if you have already got a Carrier Board, use lsusb as the command in Linux to find your USB "name."
So, for instance, if lsusb brings up /dev/ttyUSB0
, then that is the port identification.
And you can use that section, from lsusb, to then change your xbee modules in the xtcu software from Digi.
…
from digi.xbee.devices import XBeeDevice
from digi.xbee.io import IOLine, IOMode
import time
import threading
# TODO: Replace with the serial port where your local module is connected to.
PORT = "/dev/ttyUSB0"
# TODO: Replace with the baud rate of your local module.
BAUD_RATE = 9600
REMOTE_NODE_ID = "Xbee_B"
IOLINE_IN = IOLine.DIO2_AD2
IOLINE_OUT = IOLine.DIO4_AD4
def main():
print(" +-----------------------------------------------+")
print(" | XBee Python Library Get/Set Remote DIO Sample |")
print(" +-----------------------------------------------+\n")
stop = False
th = None
local_device = XBeeDevice(PORT, BAUD_RATE)
try:
local_device.open()
print("local device: ", local_device.get_node_id())
# Obtain the remote XBee device from the XBee network.
xbee_network = local_device.get_network()
remote_device = xbee_network.discover_device(REMOTE_NODE_ID)
if local_device is None:
print("Could not find the remote device")
exit(2)
def io_detection_callback():
while not stop:
# Read the digital value from the input line.
io_value = remote_device.get_dio_value(IOLINE_IN)
print("%s: %s" % (IOLINE_IN, io_value))
# Set the previous value to the local output line.
local_device.set_dio_value(IOLINE_OUT, io_value)
time.sleep(2)
th = threading.Thread(target=io_detection_callback)
remote_device.set_io_configuration(IOLINE_IN, IOMode.DIGITAL_IN)
local_device.set_io_configuration(IOLINE_OUT, IOMode.DIGITAL_OUT_HIGH)
time.sleep(1)
th.start()
input()
finally:
stop = True
if th is not None and th.is_alive():
th.join()
if local_device is not None and local_device.is_open():
local_device.close()
if __name__ == '__main__':
main()
So, see the PORT = "/dev/ttyUSB0" section of the source?
This is where I attached my Xbee module to the Carrier Board and then attached the Carrier Board to the BBB by way of USB.
Um, this may not answer a question but give more insight as to how to handle Digi Devices/Modules.
I also think that if you want to venture in this direction of UART communication w/ Xbee and the BeagleBone Black, it may be more complicated. I will keep searching my text.
P.S. This book goes over some methods to connect, Experiment 10 and Experiment 16, your "BBB" to a UART, Xbee, and how to communicate. It is a bit too in depth to get all of the communication ideas from this book but this is it:
The Hands-on XBEE Lab Manual, Experiments that Teach you XBEE Wireless Communications – Jonathan A Titus