Using confluent-kafka-python
You can use position
:
Retrieve current positions (offsets) for the list of partitions.
from confluent_kafka import Consumer, TopicPartition
consumer = Consumer({"bootstrap.servers": "localhost:9092"})
topic = consumer.list_topics(topic='topicName')
partitions = [TopicPartition('topicName', partition) for partition in list(topic.topics['topicName'].partitions.keys())]
offset_per_partition = consumer.position(partitions)
Alternatively, you can also use get_watermark_offsets
but you'd have to pass one partition at a time and thus it requires multiple calls:
Retrieve low and high offsets for partition.
from confluent_kafka import Consumer, TopicPartition
consumer = Consumer({"bootstrap.servers": "localhost:9092"})
topic = consumer.list_topics(topic='topicName')
partitions = [TopicPartition('topicName', partition) for partition in list(topic.topics['topicName'].partitions.keys())]
for p in partitions:
low_offset, high_offset = consumer.get_watermark_offsets(p)
print(f"Latest offset for partition {f}: {high_offset}")
Using kafka-python
You can use end_offsets
:
Get the last offset for the given partitions. The last offset of a
partition is the offset of the upcoming message, i.e. the offset of
the last available message + 1.
This method does not change the current consumer position of the
partitions.
from kafka import TopicPartition
from kafka.consumer import KafkaConsumer
consumer = KafkaConsumer(bootstrap_servers = "localhost:9092" )
partitions= = [TopicPartition('myTopic', p) for p in consumer.partitions_for_topic('myTopic')]
last_offset_per_partition = consumer.end_offsets(partitions)
If you want to iterate through all topics, the following will do the trick:
from kafka import TopicPartition
from kafka.consumer import KafkaConsumer
kafka_topics = consumer.topics()
for topic in kafka_topics:
partitions= = [TopicPartition(topic, p) for p in consumer.partitions_for_topic(topic)]
last_offset_per_partition = consumer.end_offsets(partitions)