I am performing CNN in google colab notebook in the pro version. Though the x_train takes the shape (60,000, 28,28). The model gets trained on only 1875 rows. Did any one faced this issue before? My model runs fine on local machine's jupyter notebook. It runs on all 60,000 rows
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.0
y_train = y_train.astype('float32') / 255.0
print("x_train.shape:", x_train.shape)
#Build the model
from tensorflow.keras.layers import Dense, Flatten, Dropout
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
r = model.fit(x_train, y_train, validation_data=(x_test,y_test), epochs = 10)
Output:
x_train.shape: (60000, 28, 28)
Epoch 1/10
1875/1875 [==============================] - 3s 2ms/step - loss: 2.2912e-06 - accuracy: 0.0987 - val_loss: 7716.5078 - val_accuracy: 0.0980