I don't think tidy works on psych::alpha(), using an example:
r4 <- sim.congeneric()
tidy(alpha(r4))
Error: No tidy method for objects of class psych
So tidy is out of question, unless there is a Best thing you can do is wrap them up in a list within a tibble:
library(dplyr)
library(tidyr)
library(purrr)
library(psych)
library(broom)
df = data.frame(group_var=sample(LETTERS[1:6],100,replace=TRUE),
matrix(sample(0:3,900,replace=TRUE),nrow=100))
colnames(df)[-1] = c(paste0("Q_",1:6), paste0("V_", 23:25))
res = df %>%
select(group_var, Q_1:Q_6) %>%
nest(data=Q_1:Q_6) %>%
mutate(alpha = map(data,
~alpha(.x,keys=c("Q_1","Q_2","Q_3","Q_4","Q_5","Q_6"))
))
res$alpha[[1]]
Reliability analysis
Call: alpha(x = .x, keys = c("Q_1", "Q_2", "Q_3", "Q_4", "Q_5", "Q_6"))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
-0.37 -0.3 0.13 -0.04 -0.23 0.6 1.6 0.36 0.039
lower alpha upper 95% confidence boundaries
-1.54 -0.37 0.81
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
Q_1- -0.38 -0.38221 -0.143 -0.05854 -0.27652 0.61 0.028 -0.080
Q_2- -0.21 -0.19042 0.173 -0.03305 -0.15996 0.54 0.048 0.066
Q_3- -0.38 -0.26988 0.096 -0.04439 -0.21252 0.61 0.053 0.046
Q_4- -0.54 -0.41760 -0.064 -0.06261 -0.29458 0.68 0.045 -0.016
Q_5- -0.35 -0.26006 0.154 -0.04305 -0.20639 0.60 0.058 0.059
Q_6- 0.03 -0.00088 0.107 -0.00018 -0.00088 0.42 0.024 -0.016
Item statistics
n raw.r std.r r.cor r.drop mean sd
Q_1- 13 0.42 0.45 0.552 -0.062 0.77 1.01
Q_2- 13 0.38 0.33 -0.073 -0.162 1.85 1.14
Q_3- 13 0.39 0.38 0.083 -0.058 1.92 0.95
Q_4- 13 0.45 0.47 0.416 0.050 1.62 0.87
Q_5- 13 0.33 0.38 -0.039 -0.073 2.08 0.86
Q_6- 13 0.21 0.18 -0.137 -0.309 1.38 1.12
Non missing response frequency for each item
0 1 2 3 miss
Q_1 0.08 0.15 0.23 0.54 0
Q_2 0.38 0.23 0.23 0.15 0
Q_3 0.31 0.38 0.23 0.08 0
Q_4 0.15 0.38 0.38 0.08 0
Q_5 0.38 0.31 0.31 0.00 0
Q_6 0.15 0.38 0.15 0.31 0
A quick check seems tidystats might be able to do it, but I ran the example code and doesn't seem to work. So you can try it for yourself.