Yes, it's possible, you can achieve this with the bucket_script
pipeline aggregation:
{
"aggs": {
"days": {
"date_histogram": {
"field": "dateField",
"interval": "day"
},
"aggs": {
"price": {
"sum": {
"field": "price"
}
},
"quantity": {
"sum": {
"field": "quantity"
}
},
"ratio": {
"bucket_script": {
"buckets_path": {
"sumPrice": "price",
"sumQuantity": "quantity"
},
"script": "params.sumPrice / params.sumQuantity"
}
}
}
}
}
}
UPDATE:
You can use the above query through the Transform API which will create an aggregated index out of the source index.
For instance, I've indexed a few documents in a test index and then we can dry-run the above aggregation query in order to see how the target aggregated index would look like:
POST _transform/_preview
{
"source": {
"index": "test2",
"query": {
"match_all": {}
}
},
"dest": {
"index": "transtest"
},
"pivot": {
"group_by": {
"days": {
"date_histogram": {
"field": "@timestamp",
"calendar_interval": "day"
}
}
},
"aggregations": {
"price": {
"sum": {
"field": "price"
}
},
"quantity": {
"sum": {
"field": "quantity"
}
},
"ratio": {
"bucket_script": {
"buckets_path": {
"sumPrice": "price",
"sumQuantity": "quantity"
},
"script": "params.sumPrice / params.sumQuantity"
}
}
}
}
}
The response looks like this:
{
"preview" : [
{
"quantity" : 12.0,
"price" : 1000.0,
"days" : 1580515200000,
"ratio" : 83.33333333333333
}
],
"mappings" : {
"properties" : {
"quantity" : {
"type" : "double"
},
"price" : {
"type" : "double"
},
"days" : {
"type" : "date"
}
}
}
}
What you see in the preview
array are documents that are going to be indexed in the transtest
target index, that you can then visualize in Kibana as any other index.
So what a transform actually does is run the aggregation query I gave you above and it will then store each bucket into another index that can be used.