1

I'm having trouble with the transition of Tensorflow Python to Tensorflow.js in regards to image preprocessing

in Python

single_coin = r"C:\temp\coins\20Saint-03o.jpg"
img = image.load_img(single_coin, target_size = (100, 100))
array = image.img_to_array(img)
x = np.expand_dims(array, axis=0)
vimage = np.vstack([x])
prediction =model.predict(vimage)
print(prediction[0])

I get the correct result

[2.8914417e-05 3.5085387e-03 1.9252902e-03 6.2635467e-05 3.7389682e-03 1.2983804e-03 7.4157811e-04 1.4608903e-04 2.7099697e-06 1.1844193e-02 1.3398369e-04 9.3798796e-03 9.7308388e-05 7.3931034e-05 1.9695959e-04 9.6496813e-05 4.2653349e-04 8.7305409e-05 8.1476872e-04 4.9094640e-04 1.3498703e-04 9.6476960e-01]

However in Tensorflow.js with the same image post the following preprocessing function:

function preprocess(img)
{
     let tensor = tf.browser.fromPixels(img)
     const resized = tf.image.resizeBilinear(tensor, [100, 100]).toFloat()
     const offset = tf.scalar(255.0);
     const normalized = tf.scalar(1.0).sub(resized.div(offset));
     const batched = normalized.expandDims(0)
     return batched
}

I get the following result:

[0.044167134910821915, 0.04726826772093773, 0.04546305909752846, 0.04596292972564697, 0.044733788818120956, 0.04367975518107414, 0.04373137652873993, 0.044592827558517456, 0.045657724142074585, 0.0449688546359539, 0.04648510739207268, 0.04426411911845207, 0.04494940862059593, 0.0457320399582386, 0.045905906707048416, 0.04473186656832695, 0.04691491648554802, 0.04441603645682335, 0.04782886058092117, 0.04696653410792351, 0.045027654618024826, 0.04655187949538231]

I'm obviously not translating the preprocessing appropriately. Does anyone see what I'm missing?

scottsuhy
  • 315
  • 4
  • 13

1 Answers1

1

There is no normalization applied in the python code but there is a normalization in the js code. Either the same normalization applied in js is applied in python as well, or the normalization is removed from the js code.

Similar answer has been given here

edkeveked
  • 17,989
  • 10
  • 55
  • 93