I am trying to implement a controlled rotation gate in Cirq/Tensorflow Quantum.
The readthedocs.io at https://cirq.readthedocs.io/en/stable/gates.html states:
"Gates can be converted to a controlled version by using Gate.controlled(). In general, this returns an instance of a ControlledGate. However, for certain special cases where the controlled version of the gate is also a known gate, this returns the instance of that gate. For instance, cirq.X.controlled() returns a cirq.CNOT gate. Operations have similar functionality Operation.controlled_by(), such as cirq.X(q0).controlled_by(q1)."
I have implemented
cirq.rx(theta_0).on(q[0]).controlled_by(q[3])
I get the following error:
~/.local/lib/python3.6/site-packages/cirq/google/serializable_gate_set.py in
serialize_op(self, op, msg, arg_function_language)
193 return proto_msg
194 raise ValueError('Cannot serialize op {!r} of type {}'.format(
--> 195 gate_op, gate_type))
196
197 def deserialize_dict(self,
ValueError: Cannot serialize op cirq.ControlledOperation(controls=(cirq.GridQubit(0, 3),), sub_operation=cirq.rx(sympy.Symbol('theta_0')).on(cirq.GridQubit(0, 0)), control_values=((1,),)) of type <class 'cirq.ops.controlled_gate.ControlledGate'>
I have the qubits and symbols initialized as:
q = cirq.GridQubit.rect(1, 4)
symbol_names = x_0, x_1, x_2, x_3, theta_0, theta_1, z_2, z_3
I do re-use the circuits with various circuits.
My question: How do I properly implement a controlled Rx in Cirq/Tensorflow Quantum?
P.S. I can't find a tag for Google Cirq
Follow up: How does this generalize to the similar situations of Controlled Ry and controlled Rz?
For Rz I found a gate decomposition at https://threeplusone.com/pubs/on_gates.pdf, involving H.on(q1), CNOT(q0, q1), H.on(q2), but this is not yet an CRz with an arbitrary angle. Would I introduce the angle before the H?
For the Ry, I did not find a decomposition yet, neither the CRy.