I'm having some inconsistencies with the output of a encoder I got from this github .
The encoder looks as follows:
class Encoder(nn.Module):
r"""Applies a multi-layer LSTM to an variable length input sequence.
"""
def __init__(self, input_size, hidden_size, num_layers,
dropout=0.0, bidirectional=True, rnn_type='lstm'):
super(Encoder, self).__init__()
self.input_size = 40
self.hidden_size = 512
self.num_layers = 8
self.bidirectional = True
self.rnn_type = 'lstm'
self.dropout = 0.0
if self.rnn_type == 'lstm':
self.rnn = nn.LSTM(input_size, hidden_size, num_layers,
batch_first=True,
dropout=dropout,
bidirectional=bidirectional)
def forward(self, padded_input, input_lengths):
"""
Args:
padded_input: N x T x D
input_lengths: N
Returns: output, hidden
- **output**: N x T x H
- **hidden**: (num_layers * num_directions) x N x H
"""
total_length = padded_input.size(1) # get the max sequence length
packed_input = pack_padded_sequence(padded_input, input_lengths,
batch_first=True,enforce_sorted=False)
packed_output, hidden = self.rnn(packed_input)
pdb.set_trace()
output, _ = pad_packed_sequence(packed_output, batch_first=True, total_length=total_length)
return output, hidden
So it only consists of a rnn lstm cell, if I print the encoder this is the output:
LSTM(40, 512, num_layers=8, batch_first=True, bidirectional=True)
So it should have a 512 sized output right? But when I feed a tensor with size torch.Size([16, 1025, 40])
16 samples of 1025 vectors with size 40 (that gets packed to fit the RNN) the output that I get from the RNN has a new encoded size of 1024 torch.Size([16, 1025, 1024])
when it should have been encoded to 512 right?
Is there something Im missing?