You need to linearize this manually.
Let's call 3
the divisor.
A linearization could look like (untested; but basic theory should be ok -> try to think about it before copy-paste):
Helper-variables
----------------
add new var quotient_1 : integer-variable in [0, inf)
add new var remainder_1 : integer-variable in [0, divisor - 1]
add new var quotient_2 : integer-variable in [0, inf)
add new var remainder_2 : integer-variable in [0, divisor - 1]
Helper-constraints
------------------
x1 = quotient_1 * divisor + remainder_1
x2 = quotient_2 * divisor + remainder_2
Now it's still needed to model the disjunction:
Helper-variables
----------------
add new var disjunction : boolean-variable
meaning:
disjunction = 1 <-> remainder_1 > remainder_2
disjunction = 0 <-> remainder_2 < remainder_1
Constraints
-----------
(1-disjunction) * divisor + remainder_1 >= remainder_2 + 1
disjunction * divisor + remainder_2 >= remainder_1 + 1