0
def process():
    active = ACTIVES[0]
    df = pandas.read_csv(f'{active}.csv', index_col='time')
    probs = df.groupby(['time']).candle.apply(lambda g: g.value_counts() / len(g))
    print(probs)

result:

time       
00:00  put     0.735294
       call    0.264706
00:05  call    0.500000
       put     0.352941
       dogi    0.147059
                 ...   
23:50  call    0.666667
       put     0.333333
23:55  call    0.500000
       put     0.441176
       dogi    0.058824
Name: candle, Length: 718, dtype: float64

now, how can I filter the TIME column by highest values(put/call) by at least higher or equal then 0.7 and filter the ones that the next TIME is equal or higher

example:

time       
00:00  put     0.735294 #higher then 0.7, but do not include in the final resul because the next TIME (00:05) is not put
       call    0.264706
00:05  call    0.500000
       put     0.352941
       dogi    0.147059

time       
00:00  put     0.735294 #higher then 0.7, and the next TIME is a put and higher or equal a 0.7
       call    0.264706
00:05  put     0.700000
       call    0.300000

TIME column is in 5 in 5 min

UPDATE 01

what I have so far:

def process():
    active = ACTIVES[0]
    df = pandas.read_csv(f'{active}.csv', index_col='time', parse_dates=True)
    df = df.groupby(['time']).candle.apply(lambda g: g.value_counts() / len(g)).reset_index()

    print(df.query('candle > 0.7'))

print result:

                   time level_1    candle
0   2020-05-07 00:00:00     put  0.735294
20  2020-05-07 00:35:00    call  0.718750
58  2020-05-07 01:40:00    call  0.750000
371 2020-05-07 12:35:00     put  0.787879
487 2020-05-07 16:25:00    call  0.742857
625 2020-05-07 20:55:00     put  0.718750
663 2020-05-07 22:15:00    call  0.750000

now, how can I iterate over the rows and compare if the next TIME row is greater by 5min and level_1 is equal direction?

please excuse my english

lsfratel
  • 1
  • 1

0 Answers0