I want to apply some filters on the bucket response generated by the date_histogram
, that filter is dependent on the key of the date_histogram
output buckets.
Suppose I have following data in
{
"entryTime":"",
"soldTime:""
}
the elastic query is something like this
{
"aggs": {
"date": {
"date_histogram": {
"field": "entryTime",
"interval": "month",
"keyed": true
},
"aggs": {
"filter_try": {
"filter": {
"bool": {
"must": [
{
"range": {
"entryTime": {
"lte": 1588840533000
}
}
},
{
"bool": {
"should": [
{
"bool": {
"must": [
{
"exists": {
"field": "soldTime"
}
},
{
"range": {
"soldTime": {
"gt": 1588840533000
}
}
}
]
}
},
{
"bool": {
"must_not": [
{
"exists": {
"field": "soldTime"
}
}
]
}
}
]
}
}
]
}
}
}
}
}
}
}
so here in that bool query, I want to use the date generated for the specific bucket by date_histogram
aggregation in both the range clauses instead of the hardcoded epoch time.
Even if we can access using script then also it's fine.
for further clarification, this is the boolean query and in the query want to replace this "DATE"
with the date_histogram
bucket key.
# (entryTime < DATE)
# AND
# (
# (soldTime != null AND soldTime > DATE)
# OR
# (soldTime == NULL)
# )
Consider below 10 Document I have:
"hits" : [
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1577869200000",
"soldTime" : "1578646800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1578214800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1578560400000",
"soldTime" : "1579942800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1579683600000",
"soldTime" : "1581325200000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1580893200000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "6",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1582189200000",
"soldTime" : "1582362000000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "7",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1582621200000",
"soldTime" : "1584349200000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "8",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1583053200000",
"soldTime" : "1583830800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "9",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1584262800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "10",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1585472400000"
}
}
]
Now the end of January 2020 in epoch is -> 1580515199000
So if I apply on the above-mentioned bool query,
Will get the output as the
"hits" : [
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "4",
"_score" : 3.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1579683600000",
"soldTime" : "1581325200000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1578214800000"
}
}
]
As document with ID 4 satisfy (soldTime != null AND soldTime > DATE)
and document with ID 2 satisfy (soldTime == null)
condition from OR part.
Now for the same bool request If I use the date of end February 2020 -> 1583020799000
, will get the hits as follows
"hits" : [
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "7",
"_score" : 3.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1582621200000",
"soldTime" : "1584349200000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1578214800000"
}
},
{
"_index" : "vi_test",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"_source" : {
"deaerId" : "4",
"entryTime" : "1580893200000"
}
}
]
- ID 7: Entry in Feb, but sold in March so is in stock for Feb-2020
- ID 2: Entry in Jan, not sold yet means in the stock
- ID 5: Entry in Feb, not sold yet means in the stock
Now the same data required for each end of the month of a whole year to plot the trend.
Thank you