You can use the NearestCentroid method from sklearn module to get the HDBSCAN Cluster. For my use case, I used the following function to get the cluster centers:
from sklearn.neighbors.nearest_centroid import NearestCentroid
def get_cluster_centers(self, clustering_df= None, metrics_by_col='CLUSTER_NO'):
model_cols=['CREATEDTTM','LAT_GEOCODER','LNG_GEOCODER']
clf = NearestCentroid()
clf.fit(clustering_df[model_cols],clustering_df[metrics_by_col])
centers_df=pd.DataFrame(clf.centroids_,columns=model_cols)
centers_df['classes']=clf.classes_
centers_df.set_index('classes', inplace= True)
return centers_df
The clustering_df is the scaled dataframe. You always should use normalized data for clustering process.