I am trying to train a lightgbm ML model in Python using rmsle as the eval metric, but am encountering an issue when I try to include early stopping.
Here is my code:
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import train_test_split
df_train = pd.read_csv('train_data.csv')
X_train = df_train.drop('target', axis=1)
y_train = np.log(df_train['target'])
sample_params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'random_state': 42,
'metric': 'rmsle',
'lambda_l1': 5,
'lambda_l2': 5,
'num_leaves': 5,
'bagging_freq': 5,
'max_depth': 5,
'max_bin': 5,
'min_child_samples': 5,
'feature_fraction': 0.5,
'bagging_fraction': 0.5,
'learning_rate': 0.1,
}
X_train_tr, X_train_val, y_train_tr, y_train_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
def train_lightgbm(X_train_tr, y_train_tr, X_train_val, y_train_val, params, num_boost_round, early_stopping_rounds, verbose_eval):
d_train = lgb.Dataset(X_train_tr, y_train_tr)
d_val = lgb.Dataset(X_train_val, y_train_val)
model = lgb.train(
params=params,
train_set=d_train,
num_boost_round=num_boost_round,
valid_sets=d_val,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=verbose_eval,
)
return model
model = train_lightgbm(
X_train_tr,
y_train_tr,
X_train_val,
y_train_val,
params=sample_params,
num_boost_round=500,
early_stopping_rounds=True,
verbose_eval=1
)
df_test = pd.read_csv('test_data.csv')
X_test = df_test.drop('target', axis=1)
y_test = np.log(df_test['target'])
df_train['prediction'] = np.exp(model.predict(X_train))
df_test['prediction'] = np.exp(model.predict(X_test))
def rmsle(y_true, y_pred):
assert len(y_true) == len(y_pred)
return np.sqrt(np.mean(np.power(np.log1p(y_true + 1) - np.log1p(y_pred + 1), 2)))
metric = rmsle(y_test, df_test['prediction'])
print('Test Metric Value:', round(metric, 4))
If I change early_stopping_rounds=False
in the train_lightgbm method, the code compiles without a problem.
However, if I set early_stopping_rounds=True
it throws the following:
ValueError: For early stopping, at least one dataset and eval metric is required for evaluation.
If I run a similar script but using 'metric': 'rmse' instead of 'rmsle' in the sample_params, it compiles even when early_stopping_rounds=True
.
What do I need to add for lightgbm to recognize my dataset and eval metric? Thank you!