This is a more general version of a question I've already asked: Significant difference between outputs of deep tensorflow keras model in Python and tensorflowjs conversion
As far as I can tell, the layers of a tfjs model when run in the browser (so far only tested in Chrome and Firefox) will have small numerical differences in the output values when compared to the same model run in Python or Node. The cumulative effect of these small differences across all the layers of the model can cause fairly significant differences in the output. See here for an example of this.
This means a model trained in Python or Node will not perform as well in terms of accuracy when run in the browser. And the deeper your model, the worse it will get.
Therefore my question is, what is the best way to train a model to use with tfjs in the browser? Is there a way to ensure the output will be identical? Or do you just have to accept that there will be small numerical differences and, if so, are there any methods that can be used to train a model to be more resilient to this?