kedro
recommends storing parameters in conf/base/parameters.yml
. Let's assume it looks like this:
step_size: 1
model_params:
learning_rate: 0.01
test_data_ratio: 0.2
num_train_steps: 10000
And now imagine I have some data_engineering
pipeline whose nodes.py
has a function that looks something like this:
def some_pipeline_step(num_train_steps):
"""
Takes the parameter `num_train_steps` as argument.
"""
pass
How would I go about and pass that nested parameters straight to this function in data_engineering/pipeline.py
? I unsuccessfully tried:
from kedro.pipeline import Pipeline, node
from .nodes import split_data
def create_pipeline(**kwargs):
return Pipeline(
[
node(
some_pipeline_step,
["params:model_params.num_train_steps"],
dict(
train_x="train_x",
train_y="train_y",
),
)
]
)
I know that I could just pass all parameters into the function by using ['parameters']
or just pass all model_params
parameters with ['params:model_params']
but it seems unelegant and I feel like there must be a way. Would appreciate any input!