when feeding a tf.data.Dataset to train EfficientnetB0 model I get the following error:
ValueError: in converted code:
C:\Users\fconrad\AppData\Local\Continuum\anaconda3\envs\venv_spielereien\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py:677 map_fn
batch_size=None)
C:\Users\fconrad\AppData\Local\Continuum\anaconda3\envs\venv_spielereien\lib\site-packages\tensorflow_core\python\keras\engine\training.py:2410 _standardize_tensors
exception_prefix='input')
C:\Users\fconrad\AppData\Local\Continuum\anaconda3\envs\venv_spielereien\lib\site-packages\tensorflow_core\python\keras\engine\training_utils.py:573 standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected efficientnet-b0_input to have 4 dimensions, but got array with shape (224, 224, 3)
I realy wonder why this happens, since when I create a batch from my Dataset:
train_generator = (tf.data.Dataset
.from_tensor_slices((train_imgs, train_labels))
.map(read_img)
.map(flip_img)
.map(brightness)
.map(blur)
.map(noise)
.map(rotate_90)
.repeat()
.shuffle(512)
.batch(BATCH_SIZE)
.prefetch(True))
validation_generator = (tf.data.Dataset
.from_tensor_slices((validation_imgs, validation_labels))
.map(read_img)
)
print(train_generator.__iter__().__next__()[0].shape)
I get the expected result (64, 224, 224, 3).
But after creating the model the error above raises when I start training:
effn = tfkeras.EfficientNetB0(include_top=False, input_shape=img_shape, classes=4)
effn_model = tf.keras.Sequential()
effn_model.add(effn)
effn_model.add(tf.keras.layers.GlobalAveragePooling2D())
effn_model.add(tf.keras.layers.Dense(4, 'softmax'))
effn_model.compile(optimizer= 'adam', loss='categorical_crossentropy', metrics= ['categorical_accuracy'])
effn_model.fit(train_generator,
epochs=20,
steps_per_epoch=train_imgs.shape[0] // BATCH_SIZE,
validation_data= validation_generator)
Does anyone know why the slices from dataset have shape (64,224,224,3) but the model doesnt recognize the batch dimension? when I try to train a keras.application model, everything works fine. I use tensorflow 2.1 and the pip install of efficientnet. Thanks