plm
calculates an ordinary variance–covariance matrix (VCOV). When you use summary
on your plm
object (what you probably mean by "provided plm-fixed-effect model"), actually the plm:::summary.plm
method is applied, which uses ordinary standard errors (SE) without degrees-of-freedom correction, until you change the vcov=
argument defaulting to NULL
to another VCOV calculated differently, e.g. with vcovCL
or vcovDC
.
You can do lmtest::coeftest(fit, vcov.=...)
, or directly summary(fit, vcov=...)
, as I show you below in an example.
Example
library(plm)
data(Cigar)
fit <- plm(sales ~ price, data=Cigar, effect="twoways", model="within",
index=c("state", "year"))
summary(fit)$coe
# same:
summary(fit, vcov=NULL)$coe ## default, ordinary SE
# Estimate Std. Error t-value Pr(>|t|)
# price -1.084712 0.07554847 -14.35782 1.640552e-43
Now, to get robust standard errors (without adjustment for clustering), we may use vcovCL
and consider the type=
argument. In ?sandwich::vcovCL
we may read:
HC0 applies no small sample bias adjustment. HC1 applies a degrees of
freedom-based correction, (n-1)/(n-k) where n is the number of
observations and k is the number of explanatory or predictor variables
in the model.
summary(fit, vcov=vcovHC)$coe
# same:
summary(fit, vcov=vcovHC(fit, type="HC0"))$coe ## robust SE
# Estimate Std. Error t-value Pr(>|t|)
# price -1.084712 0.2406786 -4.506889 7.168418e-06
summary(fit, vcov=vcovHC(fit, type="HC1"))$coe ## robust SE, df-corrected
# Estimate Std. Error t-value Pr(>|t|)
# price -1.084712 0.2407658 -4.505256 7.22292e-06
The same applies to vcovDC
and its type=
argument for robust standard errors, doubly adjusted for clustering on group and time:
summary(fit, vcov=vcovDC(fit))$coe
# same:
summary(fit, vcov=vcovDC(fit, type="HC0"))$coe ## double-cluster-robust SE
# Estimate Std. Error t-value Pr(>|t|)
# price -1.084712 0.2923507 -3.71031 0.0002157146
summary(fit, vcov=vcovDC(fit, type="HC1"))$coe ## double-cluster-robust SE, df-corrected
# Estimate Std. Error t-value Pr(>|t|)
# price -1.084712 0.2924567 -3.708966 0.0002168511