I am trying to solve a dynamic programming problem from Cormem's Introduction to Algorithms 3rd edition (pg 405) which asks the following:
A palindrome is a nonempty string over some alphabet that reads the same forward and backward. Examples of palindromes are all strings of length 1,
civic
,racecar
, andaibohphobia
(fear of palindromes).Give an efficient algorithm to find the longest palindrome that is a subsequence of a given input string. For example, given the input
character
, your algorithm should returncarac
.
Well, I could solve it in two ways:
First solution:
The Longest Palindrome Subsequence (LPS) of a string is simply the Longest Common Subsequence of itself and its reverse. (I've build this solution after solving another related question which asks for the Longest Increasing Subsequence of a sequence). Since it's simply a LCS variant, it also takes O(n²) time and O(n²) memory.
Second solution:
The second solution is a bit more elaborated, but also follows the general LCS template. It comes from the following recurrence:
lps(s[i..j]) =
s[i] + lps(s[i+1]..[j-1]) + s[j], if s[i] == s[j];
max(lps(s[i+1..j]), lps(s[i..j-1])) otherwise
The pseudocode for calculating the length of the lps is the following:
compute-lps(s, n):
// palindromes with length 1
for i = 1 to n:
c[i, i] = 1
// palindromes with length up to 2
for i = 1 to n-1:
c[i, i+1] = (s[i] == s[i+1]) ? 2 : 1
// palindromes with length up to j+1
for j = 2 to n-1:
for i = 1 to n-i:
if s[i] == s[i+j]:
c[i, i+j] = 2 + c[i+1, i+j-1]
else:
c[i, i+j] = max( c[i+1, i+j] , c[i, i+j-1] )
It still takes O(n²) time and memory if I want to effectively construct the lps (because I 'll need all cells on the table). Analysing related problems, such as LIS, which can be solved with approaches other than LCS-like with less memory (LIS is solvable with O(n) memory), I was wondering if it's possible to solve it with O(n) memory, too.
LIS achieves this bound by linking the candidate subsequences, but with palindromes it's harder because what matters here is not the previous element in the subsequence, but the first. Does anyone know if is possible to do it, or are the previous solutions memory optimal?