I was researching about MSAA and how it works. I understand the concept how it works and what is the idea behind it. Basically, if the center of triangle covers the center of the pixel this is processed ( in case of the non-msaa). However, If msaa is involved. Let's say 4xmsaa then it will sample 4 other point as sub-sample. Pixel shader will execute per-pixel. However, occlusion,and coverage test will be applied for each sub-pixel. The point I'm confused is I imagine the pixel as little squares on the screen and I couldn't understand how sub-sampling points are determined inside the sample rectangle. How computer aware of one pixels sub-sample locations. And if there is only one square how it sub-sampled colors are determined.(If there is one square then there should be only one color). Lastly,How each sub-sample might have different depth value if it was basically same pixel. Thank you!
1 Answers
Basically, if the center of triangle covers the center of the pixel this is processed ( in case of the non-msaa).
No, that's not making sense. The center of a triangle is just a point, and that pint falling onto a pixel center means nothing. Standard rasterizing rule is: if the center of the pixel lies inside of the triangle, a fragment is produced (with special rules for cases where the center of the pixel lies exactly on the boundary of the triangle).
The point I'm confused is I imagine the pixel as little squares on the screen and I couldn't understand how sub-sampling points are determined inside the sample rectangle.
No Idea what you mean by "sample rectangle", but keeping that aside: If you use some coordinate frame of reference where a pixel is 1x1 units in area, than you can simply use fractional parts for describing locations within a pixel.
Default OpenGL Window space uses a convention where (0,0) is the lower left corner of the bottom left pixel, and (width,height)
is the upper-right corner of the top-right pixel, and all the pixel centers are at half integers .5
.
The rasterizer of a real GPU does work with fixed-point representations, and the D3D spec requires that it has at least 8 bits of fractional precision for sub-pixel locations (GL leaves the exact precsision up to the implementor).
Note that at this point, the pixel raster is not relevant at all. A coverage sample is just testing if some 2D point lies inside or outside of an 2D triangle, and a point is always a mathematically infinitely small entity with an area of 0. The conventions for the coordinate systems to do this calculation in can be arbitrarly defined.
And if there is only one square how it sub-sampled colors are determined.(If there is one square then there should be only one color). Lastly,How each sub-sample might have different depth value if it was basically same pixel.
When you use multipsamling, you always use a multisampled framebuffer, which means that for each pixel, there is not a single color, depth, ... value, but there are n
(your multisampling count, typically between 2 and 16 inclusively). You will need an additional pass to calculate the single per-pixel values needed for displaying the anti-aliased results (the grpahics API might hide this from you when done on the default frambebuffer, but when you work with custom render targets, you have to do this manually).

- 43,833
- 2
- 57
- 78