When you declare a datatype
like this:
(declare-datatype Barrier
((barrier (proc Int)
(rank Int)
(group Int)
(complete-time Int))))
you are generating a universe that is "freely" generated. That's just a fancy word for saying there is a value for Barrier
for each possible element in the cartesian product Int x Int x Int x Int
.
Later on, when you say:
(assert
(forall ((b1 Barrier) (b2 Barrier))
(=> (= (group b1) (group b2))
(= (complete-time b1) (complete-time b2)))))
you are making an assertion about all possible values of b1
and b2
, and you are saying that if groups are the same then completion times must be the same. But remember that datatypes are freely generated so z3 tells you unsat
, meaning that your assertion is clearly violated by picking up proper values of b1
and b2
from that cartesian product, which have plenty of inhabitant pairs that violate this assertion.
What you were trying to say, of course, was: "I just want you to pay attention to those elements that satisfy this property. I don't care about the others." But that's not what you said. To do so, simply turn your assertion to a function:
(define-fun groupCompletesTogether ((b1 Barrier) (b2 Barrier)) Bool
(=> (= (group b1) (group b2))
(= (complete-time b1) (complete-time b2))))
then, use it as the hypothesis of your implications. Here's a silly example:
(declare-const b00 Barrier)
(declare-const b01 Barrier)
(assert (=> (groupCompletesTogether b00 b01)
(> (rank b00) (rank b01))))
(check-sat)
(get-model)
This prints:
sat
(model
(define-fun b01 () Barrier
(barrier 3 0 2437 1797))
(define-fun b00 () Barrier
(barrier 2 1 1236 1796))
)
This isn't a particularly interesting model, but it is correct nonetheless. I hope this explains the issue and sets you on the right path to model. You can use that predicate in conjunction with other facts as well, and I suspect in a sat
scenario, that's really what you want. So, you can say:
(assert (distinct b00 b01))
(assert (and (= (group b00) (group b01))
(groupCompletesTogether b00 b01)
(> (rank b00) (rank b01))))
and you'd get the following model:
sat
(model
(define-fun b01 () Barrier
(barrier 3 2436 0 1236))
(define-fun b00 () Barrier
(barrier 2 2437 0 1236))
)
which is now getting more interesting!
In general, while SMTLib does support quantifiers, you should try to stay away from them as much as possible as it renders the logic semi-decidable. And in general, you only want to write quantified axioms like you did for uninterpreted constants. (That is, introduce a new function/constant, let it go uninterpreted, but do assert a universally quantified axiom that it should satisfy.) This can let you model a bunch of interesting functions, though quantifiers can make the solver respond unknown
, so they are best avoided if you can.
[Side note: As a rule of thumb, When you write a quantified axiom over a freely-generated datatype (like your Barrier), it'll either be trivially true or will never be satisfied because the universe literally will contain everything that can be constructed in that way. Think of it like a datatype in Haskell/ML etc.; where it's nothing but a container of all possible values.]