I found this implementation of a few common features of functional programming, e.g. map / reduce: (I'm aware stuff like that is aparently coming or partially present in new C++ versions)
A part of the code:
template <typename T, typename U>
U foldLeft(const std::vector<T>& data,
const U& initialValue,
const std::function<U(U,T)>& foldFn) {
typedef typename std::vector<T>::const_iterator Iterator;
U accumulator = initialValue;
Iterator end = data.cend();
for (Iterator it = data.cbegin(); it != end; ++it) {
accumulator = foldFn(accumulator, *it);
}
return accumulator;
}
template <typename T, typename U>
std::vector<U> map(const std::vector<T>& data, const std::function<U(T)> mapper) {
std::vector<U> result;
foldLeft<T, std::vector<U>&>(data, result, [mapper] (std::vector<U>& res, T value) -> std::vector<U>& {
res.push_back(mapper(value));
return res;
});
return result;
}
Usage example:
std::vector<int> biggerInts = map<int,int>(test, [] (int num) { return num + 10; });
The type arguments T,U have to be fully qualified for this to compile, as shown in the example, with e.g. map< int,int >( ... ). This implementation is for C++11, as mentioned on the linked-to page.
Is it possible with newer C++ versions (or even 11) now to make the use of this less verbose, i.e. making the types U,T deduce automatically? I have googled for that and only found that there is apparently some improvement for class template, as opposed to function template, argument deduction in C++17. But since I only ever used templates in a rather basic manner, I was wondering whether there is something in existence that I'm not aware of which could improve this implementation verboseness-wise.