??burn
tells you what the variables mean; Z1 and Z4 seem to be what you are after:
This data frame contains the following columns:
Obs
Observation number
Z1
Treatment: 0-routine bathing 1-Body cleansing
Z2
Gender (0=male 1=female)
Z3
Race: 0=nonwhite 1=white
Z4
Percentage of total surface area burned
Z5
Burn site indicator: head 1=yes, 0=no
Z6
Burn site indicator: buttock 1=yes, 0=no
Z7
Burn site indicator: trunk 1=yes, 0=no
Z8
Burn site indicator: upper leg 1=yes, 0=no
Z9
Burn site indicator: lower leg 1=yes, 0=no
Z10
Burn site indicator: respiratory tract 1=yes, 0=no
Z11
Type of burn: 1=chemical, 2=scald, 3=electric, 4=flame
T1
Time to excision or on study time
D1
Excision indicator: 1=yes 0=no
T2
Time to prophylactic antibiotic treatment or on study time
D2
Prophylactic antibiotic treatment: 1=yes 0=no
T3
Time to straphylocous aureaus infection or on study time
D3
Straphylocous aureaus infection: 1=yes 0=no
Source
Klein and Moeschberger (1997) Survival Analysis Techniques for Censored and truncated data, Springer. Ichida et al. Stat. Med. 12 (1993): 301-310.
Edit:
In your case, there is a significant difference between routine bathing and body cleansing (Z1), but Percentage of total surface area burned (Z4) is not significant in a univariate analysis.
library(KMsurv)
library(survival)
library(survminer)
#> Loading required package: ggplot2
#> Loading required package: ggpubr
#> Loading required package: magrittr
data(burn)
## Univariate Cox regression analysis to see whether Z1 and Z4 are significant:
res.cox <- coxph(Surv(T1, D1) ~ Z1, data = burn)
summary(res.cox)
#> Call:
#> coxph(formula = Surv(T1, D1) ~ Z1, data = burn)
#>
#> n= 154, number of events= 99
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> Z1 0.5504 1.7339 0.2072 2.656 0.0079 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> Z1 1.734 0.5767 1.155 2.602
#>
#> Concordance= 0.599 (se = 0.027 )
#> Likelihood ratio test= 7.24 on 1 df, p=0.007
#> Wald test = 7.06 on 1 df, p=0.008
#> Score (logrank) test = 7.23 on 1 df, p=0.007
ggsurvplot(surv_fit(Surv(T1, D1) ~ Z1, data = burn), data = burn,
conf.int = TRUE, pval = TRUE)

res.cox <- coxph(Surv(T1, D1) ~ Z4, data = burn)
summary(res.cox)
#> Call:
#> coxph(formula = Surv(T1, D1) ~ Z4, data = burn)
#>
#> n= 154, number of events= 99
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> Z4 -0.005108 0.994905 0.005408 -0.945 0.345
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> Z4 0.9949 1.005 0.9844 1.006
#>
#> Concordance= 0.529 (se = 0.034 )
#> Likelihood ratio test= 0.94 on 1 df, p=0.3
#> Wald test = 0.89 on 1 df, p=0.3
#> Score (logrank) test = 0.89 on 1 df, p=0.3
## Multivariate Cox regression analysis to see whether Z1 and Z4 remain significant
## here, univariate Z4 was n.s., so not that relevant...
res.cox <- coxph(Surv(T1, D1) ~ Z1 + Z4, data = burn)
summary(res.cox)
#> Call:
#> coxph(formula = Surv(T1, D1) ~ Z1 + Z4, data = burn)
#>
#> n= 154, number of events= 99
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> Z1 0.534232 1.706138 0.208651 2.560 0.0105 *
#> Z4 -0.003458 0.996548 0.005435 -0.636 0.5246
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> Z1 1.7061 0.5861 1.133 2.568
#> Z4 0.9965 1.0035 0.986 1.007
#>
#> Concordance= 0.606 (se = 0.033 )
#> Likelihood ratio test= 7.66 on 2 df, p=0neither.02
#> Wald test = 7.44 on 2 df, p=0.02
#> Score (logrank) test = 7.61 on 2 df, p=0.02