I want to generate a random vector, all the elements in the vector are from a beta distribution. Since there is no such function in armadillo. My current solution is to use rbeta function(ftest1 & ftest2). But is seems super time-consuming compare with the gamma function(ftest3) in armadillo. The code is following
// [[Rcpp::export]]
NumericVector ftest1(int N){
NumericVector sam=Rcpp::rbeta(N,2.0,1.0);
return(sam);
}
// [[Rcpp::export]]
arma::vec ftest2(int N){
arma::vec sam(N);
for(int i=0;}i<N;i++){
sam(i)=R::rbeta(2.0,1.0);
}
return(sam);
}
// [[Rcpp::export]]
arma::vec ftest3(int N){
arma::vec sam=arma::randg<vec>(N,distr_param(2.0,1.0));
return(sam);}
The benchmark is following
library(microbenchmark)
N=1e4
microbenchmark(ftest1(N),ftest2(N),ftest3(N))
Unit: microseconds
expr min lq mean median uq max neval
ftest1(N) 1387.828 1405.5515 1433.774 1410.711 1420.2070 2841.565 100
ftest2(N) 1413.557 1426.2355 1449.731 1433.162 1440.3870 2310.573 100
ftest3(N) 166.255 177.0765 291.415 178.788 180.9045 8281.423 100
Does it possible to reduce the time cost for sampling from beta distribution?