Has anyone used Apache Hudi in a Pyspark environment? If it is possible, are there any code samples available?
Asked
Active
Viewed 5,801 times
0
-
1Please note that SO is about specific programming issues and you should do some research by yourself before you ask here. Check this [answer](http://mail-archives.apache.org/mod_mbox/hudi-dev/201909.mbox/%3cA6F473A0-4C25-4C7B-AC54-8BEBF7EEB0B1@getmailspring.com%3e) for example. – cronoik Mar 30 '20 at 14:43
1 Answers
7
Here is the working pyspark sample with INSERT, UPDATE and READ operations:
from pyspark.sql import SparkSession
from pyspark.sql.functions import lit
spark = (
SparkSession.builder.appName("Hudi_Data_Processing_Framework")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.hive.convertMetastoreParquet", "false")
.config(
"spark.jars.packages",
"org.apache.hudi:hudi-spark-bundle_2.12:0.7.0,org.apache.spark:spark-avro_2.12:3.0.2"
)
.getOrCreate()
)
input_df = spark.createDataFrame(
[
("100", "2015-01-01", "2015-01-01T13:51:39.340396Z"),
("101", "2015-01-01", "2015-01-01T12:14:58.597216Z"),
("102", "2015-01-01", "2015-01-01T13:51:40.417052Z"),
("103", "2015-01-01", "2015-01-01T13:51:40.519832Z"),
("104", "2015-01-02", "2015-01-01T12:15:00.512679Z"),
("105", "2015-01-02", "2015-01-01T13:51:42.248818Z"),
],
("id", "creation_date", "last_update_time"),
)
hudi_options = {
# ---------------DATA SOURCE WRITE CONFIGS---------------#
"hoodie.table.name": "hudi_test",
"hoodie.datasource.write.recordkey.field": "id",
"hoodie.datasource.write.precombine.field": "last_update_time",
"hoodie.datasource.write.partitionpath.field": "creation_date",
"hoodie.datasource.write.hive_style_partitioning": "true",
"hoodie.upsert.shuffle.parallelism": 1,
"hoodie.insert.shuffle.parallelism": 1,
"hoodie.consistency.check.enabled": True,
"hoodie.index.type": "BLOOM",
"hoodie.index.bloom.num_entries": 60000,
"hoodie.index.bloom.fpp": 0.000000001,
"hoodie.cleaner.commits.retained": 2,
}
# INSERT
(
input_df.write.format("org.apache.hudi")
.options(**hudi_options)
.mode("append")
.save("/tmp/hudi_test")
)
#UPDATE
update_df = input_df.limit(1).withColumn("last_update_time", lit("2016-01-01T13:51:39.340396Z"))
(
update_df.write.format("org.apache.hudi")
.options(**hudi_options)
.mode("append")
.save("/tmp/hudi_test")
)
# READ
output_df = spark.read.format("org.apache.hudi").load(
"/tmp/hudi_test/*/*"
)
output_df.show()

Felix K Jose
- 782
- 7
- 10