I work on the problem of finding the nearest document in a list of documents. Each document is a word or a very short sentence (e.g. "jeans" or "machine tool" or "biological tomatoes"). By closest I mean close in a semantical way.
I have tried to use word2vec embeddings (from Mikolov article) but the closest words or more contextually linked than semanticaly linked ("jeans" is linked to "shoes" and not "trousers" as expected).
I have tried to use Bert encoding (https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/#32-understanding-the-output) using last layers but it faces the same issues.
I have tried elastic search, but it doesn't find semantical similarities. (The task needs to be solved in French but maybe solving it in English is a good first step)