Example dataset:
kdf = ks.DataFrame({"power_1": [50, 100, 150, 120, 18],
"power_2": [50, 150, 150, 120, 18],
"power_3": [60, 100, 150, 120, 18],
"power_4": [150, 90, 150, 120, 18],
"power_30": [50, 60, 150, 120, 18]
})
df = pd.DataFrame({"power_1": [50, 100, 150, 120, 18],
"power_2": [50, 150, 150, 120, 18],
"power_3": [60, 100, 150, 120, 18],
"power_4": [150, 90, 150, 120, 18],
"power_30": [50, 60, 150, 120, 18]
})
I know how to do it in pandas. Below are my codes:
cols = df.filter(regex='power_').columns
for col in cols:
df[col] = pd.to_numeric(df[col],errors='coerce')
df[col+'_Status']= ['OFF' if x<100 or np.isnan(x) else 'ON' for x in df[col]]
I can create the new columns one by one in Koalas using:
kdf = kdf.assign(power_1_Status=(kdf['power_1'].gt(100)).astype(int).map({0:'OFF',1:'ON'}))
But I don't know how to do it for all power columns because my dataset is really large with 50+ power columns and 1000+ other columns. I am using Databricks. I don't want to write 50+ lines of codes for all the power columns. My problem here is that I don't know how to dynamically add "_Status" to my original column name "power_1" in for loop in Koalas. I tried for loop using similar pandas structure. Here is what I tried but failed.
for col in cols:
kdf = kdf.assign(col+'Status'=(kdf[col].gt(100)).astype(int).map({0:'OFF',1:'ON'}))
Thanks