I am trying to solve the following set of DE's:
dx' = cos(a)
dy' = sin(a)
dF' = - b * x * cos(a) + sin(a)
da' = (b * x * sin(a) + cos(a)) / F
with the conditions:
x(0) = y(0) = x(1) = 0
y(1) = 0.6
F(0) = 0.38
a(0) = -0.5
I tried following a similar problem, but I just can't get it to work. Is it possible, that my F(0) and a(0) are completely off, I am not even sure about them.
import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
beta = 5
def fun(x, y):
x, dx, y, dy, F, dF, a, da, = y;
dxds=np.cos(a)
dyds=np.sin(a)
dFds=-beta * x * np.cos(a) + np.sin(a)
dads=(beta * x * np.sin(a) + np.cos(a) ) / F
return dx, dxds, dy, dyds, dF, dFds, da, dads
def bc(ya, yb):
return ya[0], yb[0], ya[2], yb[2] + 0.6, ya[4] + 1, yb[4] + 1, ya[6], yb[6]
x = np.linspace(0, 0.5, 10)
y = np.zeros((8, x.size))
y[4] = 0.38
y[6] = 2.5
res = solve_bvp(fun, bc, x, y)
print(res.message)
x_plot = np.linspace(0, 0.5, 200)
plt.plot(x_plot, res.sol(x_plot)[0])