Assume I have a json file named 'my_data.json' as below.
{"a": [1, 2], "b": {"c": true, "d": "1991-02-03"}}
{"a": [3, 4, 5], "b": {"c": false, "d": "2019-04-01"}}
If I need to do a join operation based on attribute d, can I do it directly from arrow structs? ( or are there any efficient alternatives?) Also how nested attributes in json format are mapped into buffers once converted in arrow format?
>>> table = json.read_json("my_data.json")
>>> table
pyarrow.Table
a: list<item: int64>
child 0, item: int64
b: struct<c: bool, d: timestamp[s]>
child 0, c: bool
child 1, d: timestamp[s]
>>> table.to_pandas()
a b
0 [1, 2] {'c': True, 'd': 1991-02-03 00:00:00}
1 [3, 4, 5] {'c': False, 'd': 2019-04-01 00:00:00}