That is possible of being done, using Python's introspection capabilities, but you have to be aware this is not what the with
context block was created for.
I agree it is a useful syntax construction that can be "deviated" to do things like what you want: annotate the objects created inside a code block in a "registry".
Before showing how to do that with a context manager consider if a class body would not suffice you. Using a class body this way also deviates from its primary purpose, but you have your "registry" for free:
from somewhere import Test, MyContext
class ctx:
mytest = Test()
vars = ctx.__dict__.values()
In order to do that with a context manager, you have to inspect the local variables at the start and at the end of the with
block. While that is not hard to do, it wuld not cover all instances of Test
created - because if the code is like this:
mytests = []
with Mycontext as ctx:
mytests.append(Test())
No new variable is created - so code tracking the local variables would not find anything. Code could be written to look recursively into variables with containers, such as dictionaries and lists - but then mytest()
instances could be added to a container referenced as a global variable, or a variable in other module.
It turns out that a reliable way to track Test
instances would be to instrument the Test
class itself to annotate new instances ina registry. That is far easier and less depentend on "local variable introspection" tricks.
The code for that is somewhat like:
class Test(object):
pass
class MyContext(object):
def __init(self, *args):
self.vars = []
self.track = args
self.original_new = {}
def patch(self, cls_to_patch):
cls_new = getattr(cls_to_patch, "__new__")
if "__new__" in cls.__dict__:
self.original_new[cls_to_patch] = cls_new
def patched_new(cls, *args, **kwargs):
instance = cls_new(*args, **kwags)
self.vars.append(instance)
return instance
cls_to_patch.__new__ = patched_new
def restore(self, cls):
if cls in self.original_new:
# class had a very own __new_ prior to patching
cls.__new__ = self.original_new[cls]
else:
# just remove the wrapped new method, restores access to superclass `__new__`
del cls.__new__
def __enter__(self):
for cls in self.track:
self.patch(cls)
return self
def __exit(self, ....):
for cls in self.track:
self.restore(cls)
...
from somewhere import Test, MyContext
with MyContext(Test) as ctx:
mytest = Test()