If you have a matrix like this and want to compare adjacent diagonal elements:
m = [[ 1, 2, 3, 4]
,[ 5, 6, 7, 8]
,[ 9,10,11,12]]
then you want to make two comparisons. First, you want to compare, element by element, the sub-matrix you get by dropping the first row and first column (left) with the sub-matrix you get by dropping the last row and last column (right):
[[ 6, 7, 8] [[ 1, 2, 3]
,[10,11,12] ,[ 5, 6, 7]]
Second, you want to compare, element by element, the sub-matrix you get by dropping the first row and last column (left) with the sub-matrix you get by dropping the last row and first column (right):
[[ 5, 6, 7] [[ 2, 3, 4]
,[ 9,10,11]] ,[ 6, 7, 8]]
We can construct these submatrices using init
, tail
, and map
s of these:
m1 = tail (map tail m) -- drop first row and first column
m2 = init (map init m) -- drop last row and last column
m3 = tail (map init m) -- drop first row and last column
m4 = init (map tail m) -- drop last row and first column
giving:
λ> m1
[[6,7,8],[10,11,12]]
λ> m2
[[1,2,3],[5,6,7]]
λ> m3
[[5,6,7],[9,10,11]]
λ> m4
[[2,3,4],[6,7,8]]
How do we compare two sub-matrices? Well, we can write a two-dimensional version of zipWith
to apply a binary function (a comparison, say) element by element to two matrices, the same way zipWith
applies a binary function element by element to two lists:
zipZipWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
zipZipWith f m1 m2 = zipWith zipRow m1 m2
where zipRow r1 r2 = zipWith f r1 r2
This works by zipping the matrices together, row by row, using the zipRow
helper function. For each pair of rows, zipRow
zips the rows together, element by element, with the function f
. This definition can be simplified to the slightly less clear:
zipZipWith f m1 m2 = zipWith (zipWith f) m1 m2
Anyway, to check if corresponding pairs of elements in two matrices are negatives of each other, we can use zipZipWith isNeg
where:
isNeg :: (Num a, Eq a) => a -> a -> Bool
isNeg x y = x == -y
Then, to check if any of these pairs are negatives, we can use concat
to change the matrix of booleans into a long list and or
to check for any True
values:
anyNegPairs :: (Num a, Eq a) => [[a]] -> [[a]] -> Bool
anyNegPairs ma mb = or . concat $ zipZipWith isNeg ma mb
Finally, then, a complete function to perform the comparison would be:
noDiagNeg :: (Num a, Eq a) => [[a]] -> Bool
noDiagNeg m = not (anyNegPairs m1 m2 || anyNegPairs m3 m4)
Since zipZipWith
, like zipWith
, ignores "extra" elements when comparing arguments of different sizes, it's not actually necessary to trim off the last column/row, so the sub-matrix definitions can be simplified by removing all the init
s:
m1 = tail (map tail m)
m2 = m
m3 = tail m
m4 = map tail m
We could actually write m1
in terms of m4
to save double-calculating map tail m
:
m1 = tail m4
but the compiler is smart enough to figure this out on its own.
So, a reasonable final solution would be:
noDiagNeg :: (Num a, Eq a) => [[a]] -> Bool
noDiagNeg m = not (anyNegPairs m1 m2 || anyNegPairs m3 m4)
where
m1 = tail (map tail m)
m2 = m
m3 = tail m
m4 = map tail m
anyNegPairs ma mb = or . concat $ zipZipWith isNeg ma mb
isNeg x y = x == -y
zipZipWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
zipZipWith f m1 m2 = zipWith (zipWith f) m1 m2
and it seems to work as desired on the test cases:
λ> noDiagNeg [[1,2],[-2,3]]
False
λ> noDiagNeg [[1,2],[3,-1]]
False
λ> noDiagNeg [[1,2],[-1,3]]
True
λ> noDiagNeg [[0,2,1],[3,1,-2],[3,-1,3]]
False
This is quite similar to @oisdk's solution, though this version might be easier to understand if you aren't too familiar with folds yet.
It fails on (certain) matrices with no elements:
λ> noDiagNeg []
*** Exception: Prelude.tail: empty list
λ> noDiagNeg [[],[]]
*** Exception: Prelude.tail: empty list
so you could use @oisdk's technique of replacing tail
with drop 1
, if this is a problem. (Actually, I might define tail' = drop 1
as a helper and replace all tail
calls with tail'
calls, since that would look a little nicer.)