This problem is NP-complete, since it is a combination of two NP-complete problems:
- finding a single subset whose sum is
0
is known as the subset sum problem
- when you find all the subsets whose sum is
0
, you have to solve an exact cover problem with a special condition: you want to maximize the number of subsets.
The following steps will provide a solution:
A few remarks:
First, we know that there is an exact cover because the list of numbers has a sum of 0.
Second, we can use only the subsets that are not supersets of any other subset. Because, if A
is a superset of X
(both sum to 0
), A
can't be in the cover that has the largest number of subsets. Let A
, B
, C
, ... be the cover with the maximum number of subsets, then we can replace A
by X
and A\X
(it is trivial to see that the sum of A\X
elements is 0
) and we get the cover X
, A\X
, B
, C
, ... that is better.
Third, when we use Algorithm X, all paths in the search tree will lead to a success. Let A
, B
, C
, ... be a path composed of non overlapping subsets having each a sum of 0
. Then the complent has also a sum of 0
(which may be a superset of another subset, and then we'll use 2.).
As you see, nothing new here, and I will use only well known techniques/algorithms.
Find the subsets having a sum of 0
.
The algorithm is well known. Here's a Python implementation based on Wikipedia explanations
class Q:
def __init__(self, values):
self.len = len(values)
self.min = sum(e for e in values if e <= 0)
self.max = sum(e for e in values if e >= 0)
self._arr = [False] * self.len * (self.max - self.min + 1)
def __getitem__(self, item):
index, v = item
return self._arr[v * self.len + index]
def __setitem__(self, item, value):
index, v = item
self._arr[v * self.len + index] = value
class SubsetSum:
def __init__(self, values):
self._values = values
self._q = Q(values)
def prepare(self):
for s in range(self._q.min, self._q.max + 1):
self._q[0, s] = (self._values[0] == s)
for i in range(self._q.len):
self._q[i, 0] = True
for i in range(1, self._q.len):
v = self._values[i]
for s in range(self._q.min, self._q.max + 1):
self._q[i, s] = (v == s) or self._q[i - 1, s] or self._q[
i - 1, s - v]
def subsets(self, target=0):
yield from self._subsets(self._q.len - 1, target, [])
def _subsets(self, i, target, p):
assert i >= 0
v = self._values[i]
c = self._q[i - 1, target]
b = self._q[i - 1, target - v]
if i == 0:
if target == 0:
if p:
yield p
elif self._q[0, target]:
yield p + [i]
else:
if self._q.min <= target - v <= self._q.max and self._q[
i - 1, target - v]:
yield from self._subsets(i - 1, target - v, p + [i])
if self._q[i - 1, target]:
yield from self._subsets(i - 1, target, p)
Here's how it works:
arr = [-10, 1, 2, 20, 5, -100, -80, 10, 15, 15, 60, 100, -20, -18]
arr = sorted(arr)
s = SubsetSum(arr)
s.prepare()
subsets0 = list(s.subsets())
print(subsets0)
Output:
[[13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0], [13, 12, 11, 10, 9, 7, 6, 5, 3, 2, 1, 0], [13, 12, 11, 10, 9, 4, 2, 1, 0], [13, 12, 11, 10, 8, 7, 4, 2, 1, 0], [13, 12, 11, 10, 8, 6, 5, 4, 3, 1, 0], [13, 12, 11, 10, 7, 2, 1, 0], [13, 12, 11, 10, 6, 5, 3, 1, 0], [13, 12, 11, 9, 8, 7, 4, 2, 1, 0], [13, 12, 11, 9, 8, 6, 5, 4, 3, 1, 0], [13, 12, 11, 9, 7, 2, 1, 0], [13, 12, 11, 9, 6, 5, 3, 1, 0], [13, 12, 11, 8, 7, 6, 5, 3, 1, 0], [13, 12, 11, 8, 4, 1, 0], [13, 12, 11, 1, 0], [13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 1, 0], [13, 12, 10, 9, 8, 2, 1, 0], [13, 12, 10, 9, 7, 6, 5, 3, 1, 0], [13, 12, 10, 9, 4, 1, 0], [13, 12, 10, 8, 7, 4, 1, 0], [13, 12, 10, 7, 1, 0], [13, 12, 9, 8, 7, 4, 1, 0], [13, 12, 9, 7, 1, 0], [13, 11, 10, 8, 6, 5, 4, 3, 2, 0], [13, 11, 10, 6, 5, 3, 2, 0], [13, 11, 9, 8, 6, 5, 4, 3, 2, 0], [13, 11, 9, 6, 5, 3, 2, 0], [13, 11, 8, 7, 6, 5, 3, 2, 0], [13, 11, 8, 4, 2, 0], [13, 11, 7, 6, 5, 4, 3, 2, 1], [13, 11, 7, 6, 5, 4, 3, 0], [13, 11, 2, 0], [13, 10, 9, 8, 7, 6, 5, 4, 3, 2, 0], [13, 10, 9, 7, 6, 5, 3, 2, 0], [13, 10, 9, 4, 2, 0], [13, 10, 8, 7, 4, 2, 0], [13, 10, 8, 6, 5, 4, 3, 2, 1], [13, 10, 8, 6, 5, 4, 3, 0], [13, 10, 7, 2, 0], [13, 10, 6, 5, 3, 2, 1], [13, 10, 6, 5, 3, 0], [13, 9, 8, 7, 4, 2, 0], [13, 9, 8, 6, 5, 4, 3, 2, 1], [13, 9, 8, 6, 5, 4, 3, 0], [13, 9, 7, 2, 0], [13, 9, 6, 5, 3, 2, 1], [13, 9, 6, 5, 3, 0], [13, 8, 7, 6, 5, 3, 2, 1], [13, 8, 7, 6, 5, 3, 0], [13, 8, 4, 2, 1], [13, 8, 4, 0], [13, 7, 6, 5, 4, 3, 1], [13, 2, 1], [13, 0], [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1], [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 0], [12, 11, 10, 9, 8, 2, 0], [12, 11, 10, 9, 7, 6, 5, 3, 2, 1], [12, 11, 10, 9, 7, 6, 5, 3, 0], [12, 11, 10, 9, 4, 2, 1], [12, 11, 10, 9, 4, 0], [12, 11, 10, 8, 7, 4, 2, 1], [12, 11, 10, 8, 7, 4, 0], [12, 11, 10, 8, 6, 5, 4, 3, 1], [12, 11, 10, 7, 2, 1], [12, 11, 10, 7, 0], [12, 11, 10, 6, 5, 3, 1], [12, 11, 9, 8, 7, 4, 2, 1], [12, 11, 9, 8, 7, 4, 0], [12, 11, 9, 8, 6, 5, 4, 3, 1], [12, 11, 9, 7, 2, 1], [12, 11, 9, 7, 0], [12, 11, 9, 6, 5, 3, 1], [12, 11, 8, 7, 6, 5, 3, 1], [12, 11, 8, 4, 1], [12, 11, 1], [12, 10, 9, 8, 7, 6, 5, 4, 3, 1], [12, 10, 9, 8, 2, 1], [12, 10, 9, 8, 0], [12, 10, 9, 7, 6, 5, 3, 1], [12, 10, 9, 4, 1], [12, 10, 8, 7, 4, 1], [12, 10, 7, 1], [12, 9, 8, 7, 4, 1], [12, 9, 7, 1], [11, 10, 8, 6, 5, 4, 3, 2], [11, 10, 6, 5, 3, 2], [11, 9, 8, 6, 5, 4, 3, 2], [11, 9, 6, 5, 3, 2], [11, 8, 7, 6, 5, 3, 2], [11, 8, 4, 2], [11, 7, 6, 5, 4, 3], [11, 2], [10, 9, 8, 7, 6, 5, 4, 3, 2], [10, 9, 7, 6, 5, 3, 2], [10, 9, 4, 2], [10, 8, 7, 4, 2], [10, 8, 6, 5, 4, 3], [10, 7, 2], [10, 6, 5, 3], [9, 8, 7, 4, 2], [9, 8, 6, 5, 4, 3], [9, 7, 2], [9, 6, 5, 3], [8, 7, 6, 5, 3], [8, 4]]
Reduce the number of subsets
We have 105 subsets that sum to 0
, but we can remove the subsets that are superset of other subsets. We need a function to find if a list of elements contains all elements in another list. In Python:
import collections
def contains(l1, l2):
"""
Does l1 contain all elements of l2?
"""
c = collections.Counter(l1)
for e in l2:
c[e] -= 1
return all(n >= 0 for n in c.values())
Now, we can remove the subsets that are supersets of another subset.
def remove_supersets(subsets):
subsets = sorted(subsets, key=len)
new_subsets = []
for i, s1 in enumerate(subsets):
for s2 in subsets[:i]: # smaller subsets
if contains(s1, s2):
break
else: # not a superset
new_subsets.append(s1)
return new_subsets
In our situation:
subsets0 = remove_supersets(subsets0)
print(len(subsets0))
Output:
[[13, 0], [11, 2], [8, 4], [13, 2, 1], [12, 11, 1], [10, 7, 2], [9, 7, 2], [12, 10, 7, 1], [12, 9, 7, 1], [10, 9, 4, 2], [10, 6, 5, 3], [9, 6, 5, 3], [12, 11, 10, 7, 0], [12, 11, 9, 7, 0], [12, 10, 9, 8, 0], [12, 10, 9, 4, 1], [8, 7, 6, 5, 3], [12, 11, 10, 9, 4, 0], [12, 10, 9, 8, 2, 1], [11, 7, 6, 5, 4, 3], [13, 7, 6, 5, 4, 3, 1]]
[[0, 2, 10, 6, 4], [0, 2, 10, 8, 1], [0, 2, 11, 5, 4], [0, 2, 11, 7, 1], [0, 16, 9, 4], [0, 16, 15, 1], [0, 18, 19], [3, 2, 12, 11], [3, 2, 13, 10], [3, 17, 16], [3, 19, 14], [20, 14, 1]]
We managed to reduce the number of subsets to 21, that is a good improvement since we need to explore all possibilities to find an exact cover.
Algorithm X
I do not use the dancing links here (I think that technique is we'll designed for low level languages like C, but you can implement them in Python if you want). We just need to keep track of the remaing subsets:
class Matrix:
def __init__(self, subsets, ignore_indices=set()):
self._subsets = subsets
self._ignore_indices = ignore_indices
def subset_values(self, i):
assert i not in self._ignore_indices
return self._subsets[i]
def value_subsets_indices(self, j):
return [i for i, s in self._subsets_generator() if j in s]
def _subsets_generator(self):
return ((i, s) for i, s in enumerate(self._subsets) if
i not in self._ignore_indices)
def rarest_value(self):
c = collections.Counter(
j for _, s in self._subsets_generator() for j in s)
return c.most_common()[-1][0]
def take_subset(self, i):
s = self._subsets[i]
to_ignore = {i2 for i2, s2 in self._subsets_generator() if
set(s2) & set(s)}
return Matrix(self._subsets,
self._ignore_indices | to_ignore)
def __bool__(self):
return bool(list(self._subsets_generator()))
And finally the cover
function:
def cover(m, t=[]):
if m: # m is not empty
j = m.rarest_value()
for i in m.value_subsets_indices(j):
m2 = m.take_subset(i)
yield from cover(m2, t + [i])
else:
yield t
Finally, we have:
m = Matrix(subsets0)
ts = list(cover(m))
t = max(ts, key=len)
print([[arr[j] for j in subsets0[i]] for i in t])
Output:
[[100, -100], [10, -10], [15, 2, 1, -18], [15, 5, -20], [60, 20, -80]]