0

Looking for a more effective way to prep data for Kmeans analysis. Using the BLS ( Bureau of Labor Statistics ) and trying to learn Kmeans, I am doing the first pass of the data and want to add two columns, percentage of change over time per in median salary and tote employment. The formula is a simply (((current year, state and occ_code) minus the (min of those fourteen data points) / divided by (same min ) ... (( current year, occ_code - min) / min *100), add two columns to dataframe. The data set is ~500K rows by 24 columns. the code is run about 400 rows per min.... current expected to take about 24 hours for a full run, thus the question. Thank you

The sample data is here: Any columns will work, I am just using a_median and tot_emp Unnamed: 0 area st state occ_code occ_title tot_emp emp_prse h_mean a_mean ... h_pct75 h_pct90 a_pct10 a_pct25 a_median a_pct75 a_pct90 year tot_emp_growth a_median_growth 128037 128037 31 NE Nebraska 25-2022 Middle school teachers, except special and voc... 3720 4.9 0 45270 ... 0 0 32850 37160 44220 53170 62120 2008 25.566343 0.0 491755 491755 19 IA Iowa 47-2131 Insulation Workers, Floor, Ceiling, and Wall 360 18 19.59 40750 ... 23.56 27.98 27160 32230 38920 49010 58190 2018 25.566343 0.0 470924 470924 42 PA Pennsylvania 19-1021 Biochemists and Biophysicists 1330 24 43.69 90880 ... 50.04 67.42 52300 64700 84400 104070 140240 2017 25.566343 0.0 267336 267336 20 KS Kansas 39-4031 Morticians, Undertakers, and Funeral Directors 460 25.4 16.6 34540 ... 23.98 27.83 20400 21730 23950 49880 57890 2012 25.566343 0.0 491263 491263 19 IA Iowa 11-9033 Education Administrators, Postsecondary 2360 6.8 51.81 107760 ... 61.22 86.07 52120 68670 93650 127330 179020 2018 25.566343 0.0 5 rows × 24 columns

The code currently being tested is:

def occ_code_growths(df):
    for i in range(len(df)):
        cols_lit = ['year', 'occ_code', 'st' , 'tot_emp', 'a_median']
        df_lookup = df.lookup(list([df.index[i]]*len(cols_lit)), cols_lit)

        idx_emp_min = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) ]\
                        ['tot_emp'].values.astype(int).min()
        idx_median_min = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) ]\
                        ['a_median'].values.astype(int).min()

        idx_emp = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) \
                       & (df['year'] == df_lookup[0])  ]['tot_emp'].values.astype(int)
        idx_median = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) \
                       & (df['year'] == df_lookup[0])  ]['a_median'].values.astype(int)


        df['tot_emp_growth'] = float((((idx_emp  - idx_emp_min) / idx_emp_min) * 100)[0])
        df['a_median_growth'] = float((((idx_median - idx_median_min) / idx_median_min) * 100)[0])


        if i % 200 == 0 :
            print(df.index[i])

    return(df)

df_4 = occ_code_growths(df)

df_4.to_csv('./data/kmeans.csv')
Joe Larson
  • 53
  • 1
  • 7

1 Answers1

1

This is cleaner but still slow code for ~500K rows by 25 columns. It still takes hours. If someone has a faster answer please share.

df_6 =[[]]
def occ_code_growths(df, df_6):
    df_occ_unique = df.occ_code.unique()
    #    print(df_occ_unique)
    df_st_unique = df.st.unique()
    #    print(df_st_unique)
    df_year_unique = df.year.unique()
    #    print(df_yr_unique)
    df_6 = pd.DataFrame({ 'idx_row': [], 'tot_growth': [], 'median_growth': [], 'code': [], 'st': [], 'yr': []})
#     for i in range(len(df)):
#         print('i',i)
    for code in range(len(df_occ_unique)):
#        print('code',code)
        for st in range(len(df_st_unique)):
#            print('st',st)

            try:
                idx_emp_min = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) ]['tot_emp'].values.astype(int).min()
                idx_median_min = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] ==  df_st_unique[st]) ]['a_median'].values.astype(int).min()
            except:
                print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )


            for yr in range(len(df_year_unique)):
#                print('yr',yr)
                try:
                    idx_emp = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st])  \
                                   & (df['year'] == df_year_unique[yr])  ]['tot_emp'].values.astype(int)
                    idx_median = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st])  \
                                   & (df['year'] == df_year_unique[yr])  ]['a_median'].values.astype(int)
                    idx_row = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st])  \
                                   & (df['year'] == df_year_unique[yr])  ].index.values.astype(int)
                except:
                    print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )

                try:
                    tot_emp_growth = float((((idx_emp  - idx_emp_min) / idx_emp_min) * 100)[0])
                    a_median_growth = float((((idx_median - idx_median_min) / idx_median_min) * 100)[0])
                    df_6 = df_6.append({'idx_row': idx_row, 'tot_growth': tot_emp_growth, \
                                        'median_growth': a_median_growth, 'code': df_occ_unique[code], \
                                        'st':  df_st_unique[st], 'yr': df_year_unique[yr].astype(int) }, ignore_index=True)
                except:
                    print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )
#            print(df_6)

#    if i % 200 == 0 :
#        print(df.index[i])

    return(df, df_6)

df_5, df_7 = occ_code_growths(df, df_6)
Joe Larson
  • 53
  • 1
  • 7